
www.manaraa.com

www.manaraa.com

Issues in Software Engineering Education

www.manaraa.com

Richard Fairley Peter Freeman
Editors

Issues in Software
Engineering Education

With 34 Illustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

www.manaraa.com

Richard Fairley
School of Information Technology

and Engineering
George Mason University
Fairfax, VA 22030
USA

Peter Freeman
Department of Information

and Computer Science
University of California-Irvine
Irvine, CA 92717
USA

Library of Congress Cataloging-in-Publication Data
Issues in software engineering education : proceedings of the 1987 SEI

conference / edited by Richard Fairley and Peter Freeman.
p. cm.

Proceedings of the 1987 SEI Conference on Software Engineering
Education, held in Monroeville, Pa., Apr. 30-May I, 1987, sponsored
by the Software Engineering Institute of Carnegie-Mellon University.

Bibliography: p.
I. Software engineering-Study and teaching-Congresses.

I. Fairley, R. E. (Richard E.), 1937- . II. Freeman, Peter, 1941-
. III. Carnegie-Mellon University. Software Engineering Institute.
IV. SEI Conference on Software Engineering Education (1987 :
Monroeville, Pa.)
QA76.758.158 1988
OOS.7'07'I-dc19 88-20195

Printed on acid-free paper

© 1989 by Springer-Verlag New York Inc.

Softcover reprint ofthe hardcover 1 st edition 1989

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA),
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
Permission to photocopy for internal or personal use, or the internal or personal use of specific
clients, is granted by Springer-Verlag New York Inc. for libraries registered with the Copyright
Clearance Center (CCC), provided that the base fee of $0.00 per copy, plus $0.20 per page is paid
directly to CCC, 21 Congress Street, Salem, MA 01970, USA. Special requests should be addressed
directly to Springer-Verlag New York, 175 Fifth Avenue, New York, NY 10010, USA.

Camera-ready copy provided by authors.

9 8 7 6 S 4 3 2 1

ISBN-13: 978-1-4613-9616-1
DOl: 10.1007/978-1-4613-9614-7

e-ISBN-13: 978-1-4613-9614-7

www.manaraa.com

PREFACE

This volume combines the proceedings of the 1987 SEI Conference
on Software Engineering Education, held in Monroeville, Pennsylvania on
April 30 and May 1, 1987, with the set of papers that formed the basis for
that conference.

The conference was sponsored by the Software Engineering Institute
(SEI) of Carnegie-Mellon University. SEI is a federally-funded research and
development center established by the United States Department of Defense
to improve the state of software technology. The Education Division of SEI
is charged with improving the state of software engineering education.

This is the third volume on software engineering education to be pub
lished by Springer-Verlag. The first (Software Engineering Education:
Needs and Objectives, edited by Tony Wasserman and Peter Freeman) was
published in 1976. That volume documented a workshop in which educa
tors and industrialists explored needs and objectives in software engineering
education.

The second volume (Software Engineering Education: The Educational
Needs of the Software Community, edited by Norm Gibbs and Richard
Fairley) was published in 1986. The 1986 volume contained the proceedings
of a limited attendance workshop held at SEI and sponsored by SEI and
Wang Institute. In contrast to the 1986 Workshop, which was limited in
attendance to 35 participants, the 1987 Conference attracted approximately
180 participants.

This volume contains 23 refereed papers. Forty-one papers were sub
mitted. Eighteen were rejected and 23 were accepted, but not all 23 papers
were presented at the Conference. Instead, a few papers were selected for
presentation to stimulate discussions among the attendees. A synopsis of
each presentation and the associated question and answer session are in
cluded in this volume. Five of the 23 accepted papers were combined with
five papers from the 1986 Workshop and published in a special issue of the
IEEE Transactions on Software Engineering in November, 1987.

In addition to presentation and discussion of selected papers, the con-

v

www.manaraa.com

ference featured three invited presentations and two panel sessions. The
invited presentations are contained in Section I of this volume. They in
clude the Opening Remarks by Peter Freeman, the Keynote address by
Al Pietrasanta, and a Post-Mortem Analysis of Software Engineering Pro
grams at Wang Institute by Richard Fairley. Summaries of both panel
sessions, Models of Industry / Academia Interfaces and The Role of Ada in
Software Engineering Education, are contained in Section III.

Section II of this volume contains the 23 accepted papers. This section is
presented in four parts. Part 1 contains six papers that are concerned with
issues in undergraduate software engineering education. Topics presented
include undoing the sequential mindset; reviews, prototyping, and frequent
milestones; using software tools in a workstation environment; a first course
in computer science that emphasizes mathematical principles of software
engineering; a support tool for teaching computer programming; and a
survey of undergraduate software engineering courses. The paper "Undoing
the Sequential Mindset: The Software-CAD Approach," was written and
presented by Professor Ray Buhr of Carleton University. A synopsis of his
presentation and the ensuing question/answer session can be found at the
beginning of Section II, Part 1.

Part 2 of Section II contains six papers on teaching project courses.
Topics covered include some observations on teaching a software project
course; two complementary sequences on design and implementation of
software products; the system factory approach to software engineering
education; performing requirements analysis project courses for external
customers; an academic environment for software engineering projects; and
the myth of the real world in project courses. Four papers from Section II,
Part 2 were presented at the conference. A synopsis of each presentation
and a summary of the question/ answer session are included at the beginning
of Part 2.

Part 3 of Section II contains five papers on issues in graduate-level soft
ware engineering education. Topics covered include education for research
in software engineering; accommodating the evolution in software engi
neering education; the evolution of Wang Institute's software engineering
education program; teaching a software design methodology; and software
engineering at Monmouth College. The paper, "Education for Research in
Software Engineering," was written and presented by Professor Caroline
Eastman of the University of South Carolina. A synopsis of her present a-

vi

www.manaraa.com

tion and the question/ answer session are included at the beginning of Part
3.

Part 4 of Section II contains six papers on industrially-oriented educa
tion and training for software engineers. Topics covered include synergism
of industrial and academic education; the Israel Aircraft Industry programs
in software engineering education; a computer science education program
within AT&T Bell Labs; formal education in software engineering within
IBM; and the challenge of technology transfer.

Section III of this volume consists of two parts that contain edited tran
scripts of two panel sessions held during the Conference. The first panel,
contained in Part 1. presented four models of industrial/ academic interfaces
in software engineering education. The transcript includes presentations by
four panelists and the associated question/answer session. The panelists
were Mark Ardis of Wang Institute, Jonah Lavi of Israel Aircraft Industry,
William Lively of Texas A&M University, and Doug Politi of General Elec
tric. Priscilla Fowler of SEI was chair of the panel. The panelists' remarks
were based on their papers, which are contained in Section II, Parts 3 and
4 of this volume.

Part 2 of Section III contains an edited transcript of a panel session
on the role of Ada in software engineering education, along with the as
sociated questions and answers. The panelists were Ben Brosgol of Alsys,
Larry Druffel of SEI, Robert Firth of SEI, Nico Habermann of Carnegie
Mellon University, and David Lamb of Queen's University. Norm Gibbs
was chair of the panel. Nico Habermann was interviewed by Jim Tomayko
of Wichita State University. The interview was videotaped and presented
to the conference attendees.

We want to express our thanks to the support staff of SEI for their help
in planning and executing the conference, and for their help in preparing
the proceedings. In particular, Allison Brunvand and Albert Johnson of
the Education Division of SEI made chairing of the Conference and editing
of the proceedings pleasant and rewarding experiences. Nancy A vila and
Sue Hovey of Wang Institute helped organize the refereeing process for the
papers. Our thanks to them. Elisa Bartell of the University of California,
Irvine worked long and hard on preparation of this volume, and did the
first-pass editing and synopsizing of the transcripts. Our strong thanks to
her.

vii

www.manaraa.com

We concluded the preface to the 1986 Workshop proceedings with a
quote from the preface to the 1976 Workshop proceedings:

"We believe that these proceedings will be of interest to all
persons involved in developing computer science and software
engineering curricula, not only in universities, but also in in
dustry. Furthermore, we hope that these proceedings can serve
as the starting point for additional work in the development of
coherent software engineering curricula."

We believe this quote is appropriate for the present volume, which doc
uments one more step in the steady evolution of software engineering and
software engineering education.

Richard Fairley
George Mason University

Peter Freeman
University of California, Irvine

December 31, 1987

viii

www.manaraa.com

Contents

PREFACE .. v

LIST OF ATTENDEES ... xiii

SECTION I Invited Presentations 1

• "Opening Remarks"
Peter Freeman .. 3

• "Software Engineering Education in IBM"
Al Peitrasanta .. 5

• "A Post-Mortem Analysis of the Software Engineering
Programs at Wang Institute of Graduate Studies"
Richard E. Fairley ... 19

SECTION II Refereed Papers 37

PART 1 Undergraduate Software Engineering Education 39

• Synopsis of Presentation by Ray Buhr 41

• Questions for Ray Buhr .. 43

• "Undoing The Sequential Mindset: The Sofware-CAD Approach"
Ray Buhr .. 45

• "Adding Reviews, Prototyping, and Frequent Deliveries to
Software Engineering Projects"
Connie U. Smith and Charles R. Martin 64

• "Producing Software Using Tools in a Workstation Environment"
Mark Sherman and Robert L. Drysdale III 93

ix

www.manaraa.com

• "A First Course in Computer Science: Mathematical
Principles for Software Engineering"
H.D. Mills, V.R. Basili, J.D. Gannon, and R.G. Hamlet 120

• "A Support Tool for Teaching Computer Programming"
Marvin V. Zelkowitz, Bonnie Kowalchack, David Itkin and
Laurence Herman ... 139

• "Stalking The Typical Undergraduate Software Engineering
Course: Results from a Survey"
Laura Marie Leventhal and Barbee T. Mynatt 168

PART 2 Teaching Project Courses 197

• Synopsis of Presentation by Tom Nute 199

• Synopsis of Presentation by Ed Robertson 201

• Synopsis of Presentation by Walt Scacchi ".... 203

• Synopsis of Presentation by John Brackett 205

• On the Project Panel Course Questions and Answers 207

• "Some Observations on Teaching a Software Project Course"
James R. Comer, Tom Nute, and David J. Rodjak 215

• "Two Complementary Course Sequences on The Design and
Implementation of Software Products"
James E. Burns and Ed Robertson 230

• "The System Factory Approach to Software Engineering
Education"
Walt Scacchi ... 246

• "Performing Requirements Analysis Project Courses for
External Customers"
John W. Brackett .. 276

x

www.manaraa.com

• "An Academic Environment for Undergraduate Software
Engineering Projects"
Michael A. Erlinger and Wing C. Tam 286

• "A Project-Based Software Course: The Myth of The
'Real-World'"
Pierre-No Robillard ... 297

PART 3 Graduate Level Software Engineering Education ... 309

• Synopsis of Presentation by Caroline M. Eastman 311

• Questions for Caroline M. Eastman 313

• "Education for Research in Software Engineering"
Caroline M. Eastman ... 314

• "Accommodating the Software Engineering Evolution
in Education"
William Lively and Sallie Sheppard 324

• "The Evolution of Wang Institute's Master of Software
Engineering Program"
Mark A. Ardis .. 346

• "Teaching a Software Design Methodology"
David M. Weiss ... 363

• "Software Engineering at Monmouth College"
Harris Drucker, Richard A. Kuntz, and G. Boyd Swartz 385

PART 4 Industrial Education and Training 397

• "A Synergy of Industrial and Academic Education"
D.J. Besemer, K.S. Decker, D.W. Politi, and J.F. Schnoor 399

xi

www.manaraa.com

• "IAI Corporate Software Engineering Training and Education
Program"
Jonah z. Lavi(Loeb), Moshe I. Ben-Porat,
and Amram Ben-David 414

• "Software Engineering: Industry Meets Academia"
R.A. Radice and R. W. Phillips 440

• "The Computer Science Education Program at AT&T Bell
Laboratories, Merrimack Valley"
J.e. Cleaveland and R.W. MacDonald 475

• "Formal Education Within The Software Life Cycle"
Nancy Hall and John Miklos 494

• "The Challenge of Technology Transfer"
John E. Gibson and Vicki K. Heilig 515

SECTION III Panel Sessions 525

Part 1 Four Models of Industry/Academia Interfaces 527

• Panel Discussion on Four Models of Industry/Academia
Interfaces ... 529

• Questions and Answers on the Industry/Academia Panel 559

Part 2 Ada in Software Engineering Education 565

• Panel Sessions on Ada in Education 567

xii

www.manaraa.com

ATTENDEES
(Affiliations as of April, 1981)

Prof. Evans J. Adams
East Tennessee State University

Mr. Alan A. Adamson
IBM Canada Ltd.

Dr. Dennis M. Ahern
Westinghouse Defense
and Electronics Center

Mr. Jim Anderson
Rockwell International

Prof. Mikio Aoyama
University of illinois at Chicago

Prof. Clark B. Archer
Winthrop College

Prof. Mark Ardis
Wang Institute

Prof. Gordon Bailes
East Tennessee State University

Dr. Osman Bald
Virginia Tech

Prof. J. Eugene Ball
University of Delaware

Dr. Bruce H. Barnes
Software Productivity Consortium

Mr. Mitchell J. Bassman
Computer Sciences Corporation

Mr. Ernest Bauder
GTE Government Systems Corp.

Dr. C. Eugene Bell
Mercer University

Mr. Ray Bell
University of Texas, El Paso

Mr. Martin Ben-Ari
Eaton Command Systems
Division

Mr. David J. Besemer
General Electric

Mr. Fred L. Bierly
Penn State University

Mr. Roger Blair
Software Engineering Institute

Prof. Patrick o. Bobbie
The University of West Florida

Prof. John W. Brackett
Wang Institute

Mr. Ben Brosgol
Alsys

Mr. Brad Brown
Boeing Military Airplane Co.

Prof. Ray Buhr
University of California, Santa Cruz

Major Dan Burton
Software Engineering Institute

Mr. Ted Buswick
Addison-Wesley

Prof. Hubert Callihan
University of Pittsburgh,
Johnstown

Ms. Maribeth Carpenter
IBM Corporation

xiii

www.manaraa.com

Prof. Carl K. Chang
University of lllinois at Chicago

Mr. Mike Christel
Software Engineering Institute

Mr. Robert L. Christopher
Software Productivity Consortium

Dr. Henry Chuang
University of Pittsburgh

Mr. J. Craig Cleaveland
AT&T Bell Labs

Ms. Rita Lorraine Coco
Raytheon

Prof. Fred Cohen
Lehigh University

Ms. Sally C. Collins
Monongalia Co.

Prof. Jim Collofello
Arizona State University

Mr. Robert A. Converse
Computer Sciences Corp.

Prof. R. James Dawe
Memorial University
of Newfoundland

Mr. Keith S. Decker
General Electric Corp.

Dr. Lionel Deimel
Software Engineering Institute

Prof. Rahul Dhesi
Ball State University

xiv

Prof. Verlynda Dobbs
Wright State University

Ms. Gretchen V. Douglas
Singer-Link
Flight Simulation Division

Dr. Larry Druffel
Software Engineering Institute

Prof. Caroline Eastman
University of South Carolina

Dr. Theodore F. Elbert
The University of West Florida

Prof. Charles B. Engle, Jr.
U.S. Military Academy

Prof. Richard E. Fairley
Wang Institute of
Graduate Studies

Prof. John Fendrich
Bradley University

Dr. Robert Firth
Software Engineering Institute

Prof. Yvonne Florant
New York University G.B.A.

Dr. Gary Ford
Software Engineering Institute

Mr. John Foreman
Software Engineering Institute

Mr. David Forejt
University of Pittsburgh

Mr. Thomas J. Fouser
Jet Propulsion Laboratory

www.manaraa.com

Ms. Priscilla Fowler
Software Engineering Institute

Dr. Glenn B. Freedman
University of Houston-Clear Lake

Prof. Peter Freeman
University of California, Irvine

Mr. J. Fred Gage
University of Pittsburgh

Dr. Norman Gibbs
Software Engineering Institute

Mr. Terry A. Gill
Carnegie Mellon University

Mr. Mark B. Glick
Lamar University

Mr. Robert Glushko
Software Engineering Institute

Mr. Peter S. Gordon
Addison-Wesley
Publishing Company

Prof. Pankaj Goyal
Concordia University

Prof. David C. Haddad
Miami University

Mr. Harvey Hallman
Software Engineering Institute

Ms. Kathleen M. Hanson
IUPUI

Donnita Hatlestad
Boeing Computer Services

Ms. Vicki Heilig
IBM FSD

Prof. Sallie Henry
Virginia Tech

Mr. Carl P. Hershfield
GTE Government Systems Corp.

LtCol Ronald P. Higuera
Defense Systems
Management College

Prof. Daniel Hoffman
University of Victoria

Prof. James W. Howatt
Air Force Institute of Technology

Mr. Paul J. Howe
USA Information Systems
Engineering Command

Ms. Susan Hruska
Jacksonville State University

Prof. Robert N. Hutton
West Virginia College of
Gradute Studies

Ms. Margaret Iwobi
Watson School

Mr. Albert L. Johnson
Software Engineering Institute

Prof. Bruce W. Johnston
University of Wisconsin - Stout

Ms. Pauline R. Jordan
General Electric

Mr. Howard Kaplan
Vitro Corporation

Prof. Elizabeth E. Katz
University of Maryland

xv

www.manaraa.com

Prof. James Kiper
Miami University

Prof. Mieczyslaw Kokar
Northeastern University

Mr. Thomas M. Kraly
IBM Federal Systems Division

Mr. Robert E. Kubiak
Carnegie-Mellon University

Prof. David Alex Lamb
Queen's University

Prof. Jeffrey Lasky
Rochester Institute of Technology

Mr. Jonah Lavi
Israel Aircraft Industries Ltd.

Mr. Clifford Layton
Rogers State College

Dr. Robert J. Lechner
University of Lowell

Prof. Steven P. Levitan
University of Pittsburgh

Prof. Wiliam McCain Lively
Texas A&M University

Mr. Robert Marek
Syscon Corporation

Mr. Richard R. Marks
E-Systems

Mr. Charles R. Martin
Duke University

Prof. J. Peter Matelski
The Hartford Graduate Center

xvi

Mr. Robert A. Mathias
Westinghouse R&D Center

Ms. J .E. Mazzaferro
Pacific Bell

Dr. Martha McCormick
Jacksonville State University

Prof. Ed McCrohan
Monmouth College

Dr. Charles W. McKay
University of Houston, Clear Lake

Dr. Katherine McKelvey
Indiana University
of Pennsylvania

Mr. George E. McLaughlin, Jr.
Lamar University

Dr. Mary Micco
Indiana University
of Pennsylvania

Prof. Marlin H. Mickle
University of Pittsburgh

Mr. Freeman L. Moore
Texas Instruments, Inc.

Prof. Larry J. Morell
College of William and Mary

Mr. Philip N. Mullen
GTE Government Systems

Mr. J ohn Nestor
Software Engineering Institute

Prof. Robert E. Noonan
College of William and Mary

www.manaraa.com

Prof. Eugene M. Norris
George Mason University

Prof. Linda Northrop
SUNY College at Brockport

Prof. Tom Nute
Texas Christian University

Dr. Bill Nylin
Lamar University

Mr. Jim Perry
Software Engineering Institute

Prof. Charles Pfleeger
University of Tennessee

Mr. Richard W. Phillips
IBM

Dr. Keith R. Pierce
University of Minnesota, Duluth

Mr. Al Pietrasanta
IBM Corporation

Mr. Douglas W. Politi
General Electric

Prof. Bernard John Poole
University of Pittsburgh

Mr. David E. Priest
General Electric

Mr. Stan Przybylinski
Software Engineering Institute

Mr. Phillip Purvis
Texas Instruments, Inc.

Mr. R.A. Radice
IBM Corporation

Cpt. Clark K. Ray
U.S. Military Academy

Dr. Jacques Raymond
University of Ottawa

Prof. Stuart Reges
Stanford University

Prof. Karl Rehmer
Purdue University at Fort Wayne

Mr. Donald J. Reifer
RCI

Prof. Robert Riser
East Tennessee State University

Prof. Linda Rising
Purdue University at Fort Wayne

Prof. Edward L. Robertson
Indiana University

Prof. Edwin H. Rogers
Rensselaer Polytechnic Institute

Prof. H. Dieter Rombach
University of Maryland

Prof. Lawrence L. Rose
University of Pittsburgh

Prof. R. Waldo Roth
Taylor University

Ms. Gail L. Sailer
Boeing Computer Services

Prof. Antonio Salvadori
University of Guelph

Prof. Walt Scacchi
University of Southern California

xvii

www.manaraa.com

Prof. Elwyn M. Schmidt
California U ni versi t y
of Pennsylvania

Mr. Joel F. Schnoor
General Electric

Mr. Roger W. Scholten
Boeing Aerospace Company

Dr. Mary Shaw
Software Engineering Institute

Prof. Robert C. Shock
Wright State University

Prof. Dan Shoemaker
Mercy College of Detroit

Prof. Charles D. Sigwart
Central Michigan University

Prof. Judith o. Silence
IUPUI - CPT

Dr. Thomas P. Sleight
The Johns Hopkins University

Ms. Suzanne Smith
East Tennessee State University

Mr. James Solderitsch
U nisys Defense Systems

Prof." James Spruell
Central Missouri State University

Mr. Robert Steigerwald
U.S. Air Force Academy

Mr. Scott Stevens
Software Engineering Institute

Ms. Sara Stoecklin
East Tennessee State University

xviii

Mr. Don Stone
Software Engineering Institute

Prof. Marek A Suchenek
The Wichita State University

Ms. Alice Sun
Software Engineering Institute

Prof. Jim Tomayko
Software Engineering Institute

Mr. James L. Tucker
US AMETA

Prof. A. Joe Turner
Clemson University

Dr. Hasan Ural
University of Ottawa

Prof. Gretchen L. Van Meer
Central Michigan University

Prof. Frances L. Van Scoy
West Virginia University

Dr. Laurie Werth
University of Texas, Austin

Dr. Ronald White
Jacksonville State University

Prof. Arthur J. White
Taylor University

Major Colen K. Willis
U.S. Military Academy

Mr. Thomas o. Winfield
Hughes Aircraft Company

Ms. Audrey B. Winston
Westinghouse Electric Corp.

www.manaraa.com

Major Duard S. Woffinden
Air Force Institute of Technology

Mr. Keith Wollman
Addison-Wesley Publishing Co.

Prof. K wok Wong
Fayetteville State University

xix

www.manaraa.com

SECTION I

INVITED PRESENTATIONS

Section I contains three invited papers that were presented at the Con
ference. They are the Opening Remarks by Peter Freeman, the Keynote
Address by Al Pietrasanta, and A Post-Mortem Analysis of the Software
Engineering Program at Wang Institute by Richard Fairley.

www.manaraa.com

Opening Remarks

Peter Freeman 1

It may come as a surprise to a few of you, that software engineering
education is almost 20 years old. In the fall of 1968, Alan Perlis gave
the keynote address at the first software engineering meeting at Garmisch
Partinkirchen. In that talk, among other things, he stressed the importance
of education in this new field.

When he came back to CMU and gave a small colloquium on the confer
ence, a few of us who were graduate students attended. Our basic reaction,
as I recall, was, "What's this stuff? Software engineering? What does it
have to do with computer science? What does it have to do with educa
tion?" Since most of us were heading toward careers as professors, he said,
"It's going to be very important. It's going to be something that will affect
most of you throughout your professional lives." Well, it's almost 20 years
later and it is, indeed still affecting the lives of some of us!

In 1976, we organized a one-day industry-university interface workshop
at the University of California, Irvine, in which we tried to bring together
equal numbers of people from both sides to discuss what was needed in soft
ware engineering education. Although it was only one day, that workshop
has turned out to be one of the turning points in SE education.2

Another turning point in the history of SEE was the "first annual" SEE
worksh6p held here at the SEI, just a year ago, 10 years after the workshop
at Irvine. Norm Gibbs' attempt to make this into an annual interaction
between peers is extremely important because it provides an interactive
way to exchange information among those on the front line of SEE.

In our society, universities are supposedly the leaders in education. As
I look back over the past 10 or 20 years in software engineering education,
however, I have to admit that very often the leadership has not been in the

1 Professor Freeman has been active in software engineering education (SEE) for a
number of years, including co-authoring and co-editing several papers and a book, which
have been instrumental in the development of SEE.

2 A less public meeting sponsored by IBM the previous year was also focused on software
engineering education and may well have been an important internal milestone for IBM.

www.manaraa.com

universities. Indeed, as a university faculty member, and as an educator,
I'm not very proud of that. It's something that some of us try to work on
and that is extremely important-standing up to the responsibilities that
we have as professionals in this field. Workshops like this have the effect of
making us sit down and think about what we're doing, in order to write a
paper or to attend. Even more importantly, they give us the opportunity
to talk to each other, to find out what is happening, to get new ideas, to
exchange ideas, and so on.

Before introducing the main speaker this morning, let me share with you
a comment made by a colleague of mine in another field. All of us at UCI
who are at the associate dean level, meet several times a year to exchange
information. At the first meeting this year, we were discussing class size,
student demand, and so on. The Associate Dean from Biological Sciences
reported that they were adding extra sessions of their introductory courses,
even though it meant an overload of work for their instructors. Afterwards,
I asked him, "Stanley, why are you adding extra sections and overworking
your instructors, when you don't have to? You have all the political power
and money on campus. You don't need to do this." He replied, "We
believe very strongly, that no educated citizen, no educated student should
leave this campus, without a thorough understanding of biology; it would
be irresponsible for us to help educate students and let them go out into
the world, not understanding the principles and the basics of biological
sciences. "

I'm not sure we can yet make such a strong statement about com
puter science and software engineering, but we can certainly make a much
stronger statement than we do-about the importance of computing, in
general, and certainly about our specialty, software engineering, This is
something that we simply must do and take the responsibility for doing, in
all of our institutions, whether they are universities, colleges, community
colleges, or industrial organizations.

With this brief sketch of SEE history to set the context, let me intro
duce our keynote speaker, Al Pietrasanta. Al has been doing and teaching
software engineering for much longer than there has been an activity called
that, and we are honored to have him with us today.

4

www.manaraa.com

Software Engineering Education in IBM*

Al Pietrasanta

As Director of the IBM Software Engineering Institute from 1982 to
1985, I have a great deal of empathy, and even sympathy, for all of you who
are providing, or considering providing, software engineering education.
Based on my personal experience in industrial education and the massive
IBM program in software engineering education over the past decade, I'd
like to draw some lessons for you.

Background:
The story starts about a decade ago, around 1976, in our Federal Sys

tems Division (FSD). The reason that we got heavily into software engi
neering education, at that time and that place, is very interesting. The
Federal Systems Division, among other things, does military contracts in
volving a lot of software, and we were having trouble. We were finding it
more and more difficult to compete. IBM has excellent salaries, excellent
benefits and is desirous of nice-profit margins. You add all of that up and
we were finding that in head-to-head competition with some other software
houses, we were not cost competitive.

So, what do you do? Well, the president of FSD said, "We are going to
start competing on some other parameters. We are going to start compet
ing on high quality, on-time performance, within budget. We think those
parameters are worth money. We think we can sell contracts. Now we've
got to make sure that we can do it." So, the president turned to Harlan
Mills and others in FSD.

Harlan had been touting, for a number of years, software engineering
methodology, software engineering concepts, without too many eager listen
ers. But at this point, the motivation was there, so Harlan and others set
up a lengthy curriculum in software engineering education. Over the next

• Edited version of conference keynote address.

www.manaraa.com

five years, they trained virtually every programmer in the Federal Systems
Division, about 2,400 in all.

What has the result been? The contract programming in the Federal
Systems Division has not only survived, it has flourished. In IBM, the FSD
programming centers in Gaithersburg, Manasses, Houston and elsewhere,
are considered outstanding examples of the right way to do programming
and software development. And, beyond IBM, I believe FSD has a well
deserved positive reputation. This is due, in large part, to the training and
the application of software engineering.

There have been a series of design practices and development practices
that have been documented and used throughout the Division. Rigorous
process management disciplines have been established. Tools have been
built to surround the software process and exploit the best characteristics
of the methodology. Measurement and feedback mechanisms have been put
in place. Add all of this together and you have software engineering in the
large, which has contributed to the success of the activity.

For those of you who are interested, there is an issue! of the IBM Sys
tems Journal that is still relevant. The theme was the management of
software engineering, and Harlan Mills wrote the lead.article, on the prin
ciples of software engineering. There are also articles on the educational
program, design practices, development practices, and the management of
software engineering.

The Importance of the Profit Motive:
There are a lot of lessons from what happened in the Federal Systems

Division, but I want to highlight one: The tremendous importance of the
profit motive. We deal with a very pragmatic language in industry-profit,
revenue, cost, return on investment, and return on capital assets. No matter
how technical a decision may be, there is a very large component of the
decision-making process that's involved with these pragmatics. I sincerely
doubt whether IBM would have plunged headfirst into software engineering
education back in 1976, without a clear linkage to profit. FSD had to invest
millions of dollars to make their educational program happen. And you
don't do that, in industry, without a tremendously strong argument.

The argument was conceptually very simple: profit equals revenue mi
nus cost. You either justify an action on increased revenue or decreased

1 IBM Systems Journal, Volume 19, No.4.

6

www.manaraa.com

cost, or, if you're fortunate, both. In FSD, as a matter of fact, the justifica
tion of software engineering education was clearly to increase revenue and
also, in the longer term, because of the anticipated improvement in quality
and productivity, a justification of decreased cost. From my perspective,
those arguments still hold as much today as they did 10 years ago.

The experience of some of my friends and colleagues, however, empha
sizes that profit is a two-edged sword. You can use the argument both to
start new projects and also to kill them.

Conversion of the FSD Techniques to Commercial Applications:
After the demonstrated success at FSD, we passed on to the next major

phase -the world of commercial systems programming. Much larger than
FSD, there are at least 10,000 systems programmers in IBM. And they're
building all those operating systems that you know and love, MVS and
VM, DOS and a lot of the mid-range and low-range systems and all the
subsystems that go on top of them. Commercial systems programming does
not work on fixed price contracts, like FSD, but it still has a very distinct
linkage into the profit motive. It's essential to have high quality and high
productivity in systems programming.

In the 1970's, the emphasis had been on defect detection, and tremen
dous progress had been made in improved quality via this route. But
entering the 1980's, it was apparent that we were really running out of gas
on defect detection technology and that we had to begin to exploit defect
prevention. So we turned, with some degree of envy, to our colleagues in
the Federal Systems Division, who were, at that point, well along in imple
menting their software engineering methodology and were correctly touting
software engineering as an outstanding means of defect prevention.

A major task force was run about 1980, with Watts Humphrey2 heading
the process activities. Watts drew participants from all the major labora
tories in IBM and the conclusion was something that I guess was obvious
when we started: That the world of commercial programming should pick
up the experience of FSD and apply it.

So that's what we did. We modified the education program, adapting it
to the needs of the commercial world. We also picked up the formal design
language, called PDL, that had been in use by FSD, changed the syntax
a bit to conform to the commercial languages we were using, and changed

2Currentiy on the staff of CMU-SEI.

7

www.manaraa.com

the name to CDL, Common Design Language. We set up the Software
Engineering Institute at IBM out of that effort several years before CMU
SEI was established. It's still going strong. To date we have trained nearly
all of the systems programmers in IBM, a massive education program.

Teaching SE is Difficult:
Out of that experience, I would like to convey a few lessons. First,

teaching software engineering is very difficult. Let me give you the context.
We are training (actually, retraining) professional programmers of five, ten,
twenty years of experience. There's a whole curriculum, but the bread and
butter course is a basic two-week course, called "The Software Engineering
Workshop." It is a total immersion course. Students must pass three pre
requisites to enter it: algebra, symbolic logic and set theory, and the design
notation. During the course, there's homework, exercises and case studies,
an exam after the first week, and a final after the second-a tremendously
intense course. It covers conceptual models, both function and state ma
chines, basic function and data structures, function commentary (which is
used for precise expression and for verification), function and data abstrac
tion, stepwise refinement, separation of concerns, encapsulation., and lots
of other things, all wrapped up in one course.

Now, the question is, how do you get teachers to teach that? The in
structors had to be experts in the development process. On average, the
instructors at the Software Engineering Institute had about 10 years of
development experience. Why was that necessary? Continually, through
out the course, the students would be saying, "But how do you apply it?"
"But I'm doing it differently today." "But it doesn't work that way, in my
laboratory ... ," etc., etc. In order to hold the class together, and to provide
some credibility, the insructors had to be intimately familiar with the exist
ing development process. Thus, the instructors were able to map the new
software engineering methodology on top of the old-a very difficult task.

Now, it would also have been nice if they were experts in software en
gineering. But that's a contradiction in terms, because we really didn't
have them. So, we had to train the instructors in the methodology. We
put a training program together and it still surprises me today that it took
an intensive year of training to reach the point where experienced develop
ment professionals could capably teach the two-week course. After several
years of improving the efficiency of that training program, it's down to nine

8

www.manaraa.com

months. So, it takes a long while.

Student Resistance:
There's a corollary to this lesson. Not only is software engineering

difficult to teach because of instructor qualifications, but it's difficult to
teach because of student resistance. Those of you who work in universities
have the advantage of dealing with uncluttered minds, students with no
preconceived notions, who are sitting there gladly soaking up the wisdom
that you're imparting. That may be a slight exaggeration, but the fact is, we
are really at the opposite extreme in industry. We're dealing with students
who are very experienced, very competent. They have been successful in
their careers. Furthermore, they have been designing and developing very
complex software products for a number of years, which have also been
successful. So, we bring them into a classroom, sit them down, and say,
"You haven't been doing design right. There's a different and better way
to do it." Clearly, we don't come out and say those words, but believe me,
the message is there. And it generates resistance, so that by the middle of
the first week, there's almost a revolt going on. Fortunately, because of the
caliber of the instructors, and the intrinsic value of material, we are able
to turn that resistance around by the end of the second week, in virtually
every case. Consequently, we have graduates who are strong advocates of
the new methodology.

Design Bureaucracy:
There's another resistance point that I call the resistance point of de

sign bureaucracy. What we're teaching is precise, complete design record
ing, using a formal, rigorous, mathematically-based design language. The
experienced designers have been doing design on yellow pads, scribbling in
an informal way. Even when they begin to buy the methodology, they say,
"You've taken the fun out of design." The only answer, and perhaps the
best answer is, "We may be taking the fun out of designing by the seat of
your pants, but we're also taking the bugs out of that design." That's the
reason we're doing it. The trade-off is well worth it.

SE is Difficult to Learn:
What I've been saying is from the perspective of the teachers of software

engineering. Now, let me flip the coin over and look at the situation from
the students' perspective.

If it's difficult to teach software engineering, it's even more difficult to

9

www.manaraa.com

learn it. After an intensive course, our graduates are far from experts. They
go back to the laboratories and they try to apply the methodology. They
run into all sorts of problems, difficulties, and roadblocks. A formal design
language to express software engineering methodology is very powerful, but
difficult to use.

I compare it to learning your first programming language, in a course,
or out of a book. You left it and said, "Bah! Now I'm a programmer!"
Then you started applying the language. You started programming. It
might have been one, two, or three years later, when you reflected back
and said, "Now I understand. Now I'm a programmer." It's the same thing
in software engineering, applying a design notation; it takes a tremendous
amount of application and experience, and trial and error to reach the point
of proficiency. You can learn the syntax, you can learn the mechanics, but
it takes a long time to apply it.

The Difficulty of Applying SE:
In the IBM Software Engineering Institute, we recognized this problem

quite early and we expanded our mission, from strictly one of imparting
education, to one of helping the graduates become practitioners. So, what
we put in place was a software engineering notebook, where we collected
together all of the technical reports, all of the experiences, and all of the
evaluations by the practitioners. They were published and sent to all of
the graduates. We ran software engineering symposia, where we brought
the practitioners together to share their experiences. We set up a course,
called the Software Engineering Application Laboratory3, which brought
together people who were about to implement major projects using the
new methodology; they would bring real, live, large problems and, in a
laboratory environment, we would analyze and solve those problems. That
was desirable, because the basic course necessarily had relatively small pro
grams and design problems in its content. Finally, we made sure that every
programmer location had on-site consultants, so that anyone beginning to
use the methodology and running into a problem could turn to a local ex
pert and get over the roadblock to proceed. This was very, very important.

So, the message from this lesson is simply that formal education does
not make a qualified software engineering practitioner; it is an essential first

3This course and the software engineering notebooks referred to were set up by Mary
Beth Carpenter.

10

www.manaraa.com

step, but much more is needed.

The Difficulty of Getting Management to Change:
I've talked about the difficulty in teaching software engineering and

the difficulty of learning software engineering. There is yet one more diffi
culty, that perhaps masks the other two. The difficulty is getting program
ming management to apply the software engineering methodology on their
projects and products. Every programming shop at IBM is overcommitted.
We have much more work than we can do. We're short on resources. The
management is staring many commitments and deadlines in the face, so
when you say, "Why don't you start implementing all of this methodol
ogy?", the answer is, "Wait until next year. As soon as the smoke clears,
as soon as I can see my way free, I will do what you say. But please, not
now." Of course, next year never comes in that mode.

Another argument was, "But at the moment, all we are doing is modi
fying existing products. As soon as we have a new product, that's an ideal
time to implement the new methodology." Well, it's not too often at IBM
Systems Programming, that we have a totally new product. Virtually ev
erything we do is modifying existing products. So, unless the methodology
can be applied in that context, then it's a failure.

Once again, the Software Engineering Institute expanded its mission,
from education, to helping the practitioners, to being a PR firm. We began
to visit every programming site, every center manager, and over and over
again, convey the necessity, the benefits, and the value of the new technique,
and to discuss with them how to begin to implement the technical methods
on real projects. Our recommendation was a very obvious one: "Start
small. Pick a small project. Pick a relatively simple project. Pick an
isolated project. Get the people on that project trained, make a consultant
available, and start to get some real experience in your shop using the new
methodology. Once you have that under your belt, expand to more projects
and, over a period of time, get the whole place converted."

Now, that is an approach that takes a great many years. Anyone who
wants this to happen overnight is really kidding himself. We had to take a
realistic approach: Implementation would be evolutionary and evolutionary
meant years. It is, in some senses, agonizingly slow to convert. Maybe
there's a faster way, but we haven't yet figured it out. So, that's the
approach we took, and I think, thus far, we've been pretty successful.

11

www.manaraa.com

The Reward:
So far, I've been concentrating on the difficulties: The difficulties of

teaching, the difficulties of learning, the difficulties of applying software
engineering. Let me present one final lesson-a very positive one, and by
far, the best lesson of all. That is, the immense satisfaction you'll experience
when you begin to see the results, when you begin to realize that what you
have been preaching and teaching for years really works.

You've all been involved in education. Many of you have been in front
of a classroom, and I'm sure you've faced the same kinds of concerns and
doubts that I have in front of a classroom: That is, are you really accom
plishing anything? Are you really changing anything? You pour your heart
and soul out to the students, in your course and you wonder, "Is anything
going to change?" Well, if you have all passed through that dark night of
the soul, then you can imagine the immense sense of accomplishment and
achievement, when you begin to see the results of your work. All over IBM,
in every programming laboratory, projects are using the methodology and
the results are demonstrating that the investment is well worth it.

Let me give you one example as illustrative of what's been happening.
On a large programming system, which has had a history of a defect in
jection rate of 60 defects per thousand lines of source code (which, by the
way is average for us, not unusually high or low) a portion that operating
system under development used the full range of function and data abstrac
tion that we were teaching and their injection rate was reduced by a factor
of 10, from 60 defects per thousand, to 6. Even better than that, their
shipped quality level (the number of defects in code that was shipped) was
reduced by a factor of 12. And this, by the way, is at a point in time when
we do not really have full exploitation of the methodology, because we are
still in the process of building support tools which will make the job much
easier and faster for the designers and developers.4

4This experience has been documented in the IBM Systems Journal, Volume 24, in
1985. The theme of the issue was quality and productivity in our systems programming
effort. The article referred to is "Quality Emphasis in IBM Software Engineering Insti
tute," by Harvey Hallman [now at eMU-SEI]. It brings up-to-date, the previous Journal
articles on software engineering education. There is an outstanding article on software
process architecture, by Ron Radis, an article on formal requirements definition, by Dick
Phillips, other articles on process automation, process productivity and so on. [All the
authors mentioned above were present at the conference].

12

www.manaraa.com

ConcluJion:
So, there are some of our experiences, and some of the lessons we've

learned. I very briefly covered a decade of experience in IBM. To net it
all out, I would make two points. First, don't be complacent. It's not
easy to convert individual professional practitioners and it's certainly not
easy to convert whole development laboratories to a new methodology. But
also, don't despair. When the conversion does happen, when the results do
occur, you will realize, like us, that it was worth all the effort.

QueJtionJ from Audience:
Charlie Martin: I have two questions. First, is the software engi

neering notebook available to the public?
Al Pietrasanta: No. It's IBM confidential because the articles in it

deal with a lot of unannounced products and the work that's being done
on them.

Charlie Martin: Second, once you've taken somebody through this
software engineering workshop and you send them back to their old shop,
how do you integrate them back into projects that they were working on?
How do you take them back to the farm?

Al Pietrasanta: Well, you certainly don't apply the methodology in
the middle of the project. You don't-if you're in the middle of development
or testing-all of a sudden say, "Let's flip over." The methodology can only
be properly applied at the beginning of a project, although it can be applied
to projects that are modifying products, as well as producing new products.
But, nevertheless, you start at the beginning. What often happens, is that
these students are coming to class between projects, so when they go back,
they are about to start some new project. What we try to do, is fill a class
with all of the programmers and designers from a project, so that when
they leave the class, there is a critical mass of trained individuals at the
start of a new project. That doesn't always work, but that's what we try
to do.

Steve Woffinden: How much did you have to educate your supervi
sors before you started working with the workers?

Al Pietrasanta: Well, it wasn't before. It was during. We did it in
parallel, rather than serial. We actually had more than one version of the
workshop that I'm talking about. The total immersion, two-week version
was for first-line managers and all the professional programmers. We had a

13

www.manaraa.com

one-week variant which was a software engineering workshop for managers,
second-line and above, in which we introduced all of the methodology, the
techniques, and the language. We concentrated very heavily in that course,
on the value of the methodology, on experiences with it, and on the kinds of
arguments needed to present to upper management in order to sell it. So,
the course was a combination of technical and sales course, if you will, to
upper management. Our intent was to put the whole population through
either the basic software engineering workshop or the software engineering
workshop for managers.

Steve Woffinden: Did you identify any things that you would like
to have new people that you've hired out of the universities know or not
know about software engineering before they came to you?

Al Pietrasanta: Boy, we could take all day on that question, not
because universities are doing a bad job, but because the interrelationship
between university education and industry training is a very tricky one. I
will tell you, in general, we have hired, in the main, computer science grad
uates, into the programming profession, and they have been outstanding.
The education that you university people are giving to computer science
majors is, in general, excellent. As a matter of fact, the concern we have is
that we bring these very well-trained, very sharp young people into IBM
and they sit next to all of us old timers and we're going to brainwash them
out of their new, young, excellent, creative ideas. I will say that in general,
there are two roles. The role of the university, in computer science, is to
provide a broad conceptual foundation, as deep as possible, and as detailed
as possible. We can't do that. What we can do, is build on that concep
tual foundation and give the precise, tailored training that we need, for our
specific projects, for our specific work. So, I think there is a split between
what universities can do and what industry has to do. I guess my message
is to continue doing the excellent job you've been doing.

Gail Sailer: You've talked about the instructor needing a one-year
preparation period. Can you discuss the preparation that went into getting
ready to train the instructors? Do you have a rotating staff that does that?

Al Pietrasanta: At the moment there are, I guess, something like 50
certified instructors. The only people who are allowed to teach this par
ticular course are those who have passed through the formal Certification
Program. Initially, all that work was done at the central Software Engi
neering Institute. Now, because each laboratory has certified instructors

14

www.manaraa.com

and because the software engineering workshop is decentralized and taught
in the individual programming laboratories, rather than at the central in
stitute, a lot of new instructor training goes on at the local sites. What it
consists of is going over every module of the course, practicing it, dry run
ning it in front of experienced instructors, reviewing video tapes of other
presentations and reviewing video tapes of your own work, getting general
instructor training on how to be a good instructor, because a lot of the
people have not had prior teaching experience. All of that takes about 9
months.

Judy Silence: Do you have a list of software tools that are used in
each of the stages of the software life-cycle?

Al Pietrasanta: I would like to refer you to an article in the Systems
Journal.s It is the best presentation of the tool stategy that we have to
surround our commercial systems programming and to exploit the software
engineering methodology.

Joan Mazzaferro: First, you mentioned that for your first go-round
of instructors, that you took experts from the field, in order to help convince
the people being trained that this stuff is good for them. That implies to me
that you had a really strong commitment from your top management. Can
you help me in understanding what you did to influence that commitment
to show them the value, or did they send that message down?

Al Pietrasanta: Well, first of all, we had the benefit of building on
the FSD experience. At FSD, that commitment started from the top. The
Division President was totally committed to the program. When we got
into the commercial world, the initial staffing of the Software Engineering
Institute, for the commercial systems programmers, was done with several
of the FSD certified instructors. So, the nucleus carne out of FSD and
then, we were able to build on that nucleus. We started with the highest
level of support in IBM, for the commercial Software Engineering Institute,
one level below the Chairman of the Corporation supported what we were
doing. Having said that doesn't mean a whole lot, because in IBM, there is a
surprising amount of autonomy. Even though the top of the corporation will
say, "Go forth and do it," you still have to sell every level of management.
That's what took a number of years.

Joan Mazzaferro: You mentioned a cost benefit study.

5"Software Automation," written by Huffnagel and Beregy.

15

www.manaraa.com

Al Pietrasanta: Yes.
Joan Mazzaferro: Did that have an influence factor? A high one,

medium, or low?
Al Pietrasanta: Well, the trouble 10 years ago, was that we were

working on faith. We didn't have the cost benefit analysis. As a matter of
fact, that, to me, indicates the tremendous decision that the FSD President
made, back at that point in time. He was really betting his job on the
possibility that software engineering could payoff. But we did not have any
cost benefit analysis. We were praying, back then. Now, as the years have
passed and experience began to come in, we could build on that experience
and we could quantify more and more, that there truly was a benefit. Today,
we really don't have an argument anymore.

Joan Mazzaferro: After the completion of the two-week Program,
does the reward structure change for the people in the program that en
courages them to use what they've learned by going through .the training?
If so, that implies that you've got your other lines of management agreeing
that this is the way to go about doing things.

Al Pietrasanta: Oh, but the implication is the critical part, your last
sentence. The rewards structure only changes, if when they go back to their
laboratory and start dealing with their management, their management
says, "Use it." If the management says, "I don't understand it," or "I
don't want you to touch our project," or "I'm holding it together with
band-aids and bailing wire, don't talk to me about software engineering
methodology," you are in trouble. These people are very maze bright.
They're going to learn very quickly that their reward structure comes from
their manager. So, the answer is you've got to work from the bottom up
and the top down. You've got to train the people, from the bottom up and
get them qualified and capable in new methodology. You've got to work
from the top down, through every level of management and train them and
convince them that it's right. What I just said in two sentences, is a very,
very hard job. I'm talking years, and it's still going on in our case at IBM.

Joan Mazzaferro: How long did it take for you to get that satisfac
tion that you talked about?

Al Pietrasanta: When I started running the Software Engineering
Institute in 1982, it was not there and I would say maybe by 1984, when
the election returns began coming in, it began to build up. So, it .took a
couple of years.

16

www.manaraa.com

Dennis Ahern: My question is, you've presumably used a lot of
different languages, computer languages, from the Federal Systems Division
and in the commercial area. In your opinion, are some languages better or
worse than others, in terms of software engineering methodology?

Al Pietrasanta: Well, first of all, as I'm sure many of you know, there
are fundamental differences between a design language and a programming
language. Everything that I've talked about this morning surrounding the
software engineering design methodology, is the use of a design language.
Now, as you cascade down through stepwise refinement using that design
language, you ultimately reach the point where you have to interface with
a programming language. The programming language in major use in IBM
commercial programming, is a variant of PLl. That's why we changed
the FSD design language because we wanted the interface into the pro
gramming language, to look more like PLl. But in the main, when you're
doing the design, you are working at abstract levels, significantly above the
programming language.

The design language has gone through several evolutions, from PDL, in
the Federal Systems Division, to CDL, the Common Design Language that
we started off with. We have recently put together a new design language,
with all of the same syntactical power, but it's Ada based.

Understand, our programming is not in Ada, it is still in versions of
PLl. But the design language is Ada-based, because we believe that the
syntax of Ada is closer to what we needed in a design language, than any
other programming language. We've been very pleased with that decision.

Peter Freeman: We're almost out of time for this session, but please
let me exert the moderator's prerogative and ask the final question.

AI, the SE curriculum that you've been discussing this morning and the
experience that you've been reporting, is clearly very valuable. Yet, it is,
at the best, only a few weeks of instruction and admittedly covers only one
aspect of the software engineering process. What's the next thing that IBM
or someone building on that base of experience should be working on?

Al Pietrasanta: There are a lot of directions you could go. One
thing that we are emphasizing very heavily is surrounding the concept and
the theory and the methodology with tool support. We have never been
able to have significant tool support of the design process, because if you
are designing in English or native language, it's hard to have supporting
computer tools. But, when you start designing with a formal design nota-

17

www.manaraa.com

tion, then, all sorts of tool support opens up. That has been lagging the
education, because tool development is very expensive and you don't do it
overnight. We are investing a lot of money and a number of years to build
a supporting tool kit surrounding the methodology.

In terms of the next world to conquer, I would step backwards and go to
the requirements definition, the very front end of the process. A comment
that comes out of our Software Engineering Workshop, over and over again,
is "Terrific! You've now explained to me how to design. But don't you
realize that designs are built on requirements and our requirements are
lousy and therefore, we are building a very rigorous, formal design, on a
pile of sand." And they're right. The answer that I always give them is,
"Look, we're solving one problem at a time. We figured out how to solve
the design problem. That's what we're teaching. As soon as we figure out
how to solve the requirements problem, we will teach you that." We are
working on that. So, I would say building the rigor and the formality into
the very initial requirements definition, is the next major step.

18

www.manaraa.com

A Post-Mortem Analysis of the Software Engineering Programs
at Wang Institute of Graduate Studies

Abstract

presented by

Richard E. Fairley, Chairman

School of Information Technology

Wang Institute of Graduate Studies

presented at the

Software Engineering Education Conference

Software Engineering Institute

Pittsburgh, Pennsylvania

May 1, 1987

This paper contains the text of an invited presentation by the author at the Software

Engineering Education Conference, which was held in Pittsburgh on April 30 and May 1,1987.

Topics presented here include an overview of the Wang Institute programs in software

engineering, an analysis of the strengths and weaknesses of the Master of Software

Engineering curriculum, and a discussion of reasons for termination of the software engineering

education programs at Wang Institute of Graduate Studies.

Introduction
I thought it would be appropriate to do a post-mortem analysis of the software engineering

programs at Wang Institute this morning. Wang Institute has been sold to Boston University,

and BU plans to use the facility for continuing education activities. The School of Information
Technology is being closed at the end of Summer Session. The Master's program in software

engineering will be terminated then.

By continuing through the end of summer, 40 of our current students will be able to complete

the Master's program. That will leave around 20 students in various stages of the program. We

hope that we can arrange for five or six of those students to take their remaining elective

courses at Boston University in the coming year and receive the Master of Software Engineering

degree. Some of the other students may transfer into other Master's degree programs at

Boston University.

Wang Institute of Graduate Studies was founded in 1979 by Dr. An Wang of Wang

Laboratories. The Institute is totally independent of Wang Laboratories and operates as a non

profit institution of higher education. We have degree-granting authority from the

Commonwealth of Massachusetts and accreditation by the New England Association of Schools

www.manaraa.com

and Colleges. Until recently, the Institute was supported almost exclusively by financial

contributions from the Wang family.

I want to start by saying a few words about other software engineering programs at Wang

Institute. We are best known for the Master of Software Engineering program, but we have

done several other things that have been, I think, quite successful in bridging the gap between

university and industry. We have a library of about 5,000 volumes and 300 journals in the areas

of computing, mathematics, and management. I think it rivals anything in the New England

region, including Harvard and MIT, within the admittedly narrow areas of our collection. It's

been a great resource for local industry and other universities, as well as a resource for Wang

Institute faculty and students. The fate of the library is unknown at this time. It will either be

sold or absorbed into the au library system.

We have run a distinguished lecturer series for the past several years. About once a month

during the academic year we have invited various distinguished computer scientists and

software engineers to spend a day with us. The distinguished lecturer meets with faculty and

students and gives a lecture that is open to the public, followed by a wine and cheese reception.

These lectures usually attract 150 to 200 people. You have probably received announcements

of these lectures, and some of you may have attended some of them.

We had a Corporate Associates Program, in which we did special things for local companies,

such as our annual symposia where we presented tutorials on topical Issues, faculty research

colloquia, and student projects. In return, they let us know what was going on in their

organizations. Sometimes these affiliations resulted in consulting arrangements for our faculty
members and adjunct faculty appointments at Wang Institute for our industrial colleagues. In
general, the CAP program was an effective vehicle for technology transfer, both from academia

to industry and vice versa.

Our Summer Institute program of one week short courses has also been quite successful. In

the past five years, we have given approximately 50 short courses, with a total attendance of

around 1500 people from industry. Some of these courses were taught by our faculty, but

mostly they were taught by distinguished others. We always tried to find the best possible

instructors for those courses. The quality of instructional support services, as well as the

environment in which the courses were conducted, gave the program a good reputation with

both the guest instructors and the industrial students.

Overview of the M.S.E. Program
The program for which Wang Institute is best known is the Master of Software Engineering

(M.S.E.) degree program. I would like to give you a little background on the history and

evolution of the curriculum and make some observations on the current status of the program.

20

www.manaraa.com

Wang Institute was founded in the fall of 1979. I was invited, along with about a dozen other

people, to meet with Dr. An Wang in Boston in October of '79 to talk about a Wang Institute. I

was invited because of some previous work I had done on software engineering curricula,

dating from the early to mid-70s. During that period, I had worked with people Oke Peter

Freeman and Tony Wasserman, and we wrote papers, individually and collectively, about

software engineering education.

In '77 and '78, I was chairman of a committee of the IEEE Computer Society to develop a

Master of Software Engineering curriculum. We did good work and we produced a nice report.

However, it was not well received by some of the people who were in powerful positions within

the Computer Society at that time. This was partly because of political reasons that I was

unaware of, and somewhat naive about, but largely because the proposed curriculum wasn't

perceived as being real engineering. I'll never forget the quote by one hard-core engineer

(pardon the pun) who said "I don't know what you guys have done, but it ain't engineering." He

could understand the need for courses in design and implementation and testing, but customer

requirements, project management, technical communication? "What are you guys talking

about? That isn't graduate-level engineering education."

That experience, plus a few similar ones, have led me to think of software engineering as a

diSCipline in search of a home. I have heard comments along the lines of "Is there a Mure for

software engineering?" I think there is a Mure because of the overwhelming social and

economic importance of the topic, as well as the intellectual challenges involved, but I'm not

optimistic that software engineering is going to dominate the computer science departments

(nor should it). We will probably have more success in separate departments or as profeSSional

schools or institutes - but that's another topic for another day.

So, the Wang Institute curriculum was designed in '79 and '80 by the National Academic

Advisory Committee, which grew out of the group that met with Dr. Wang in the fall of '79. And
as I said, I was invited to participate because I had previously done curriculum wo~ in software

engineering. I had a Master's curriculum in my hip pocket that I was glad to try out on the

Committee. The MSE curriculum at Wang Institute is not identical to the IEEE report, but it is

based on, and resembles, that earlier wo~.

I think there's an important lesson here, of being prepared and being ready when

opportunities arise. It takes a long time to evolve a curriculum; and when management is ready

to act, they want to do it in the next three months. We were able to do that at Wang Institute

because of prior preparation.

I'm going to tell you, in a few minutes, about the Ph.D. program we had planned at Wang

Institute, which will not happen now. But I do have a Ph.D. program plan in my hip pocket and

someday, somewhere, someone's going to want one. I'll be ready. So, plan ahead, because

opportunities arise suddenly and we must be prepared to respond to them.

21

www.manaraa.com

Classes started at Wang Institute in January of '81. We received full accreditation in the Fall

of '84. I want to come back and talk about that, at the end. A full-time president was hired in

1984 and he started in 1985. We are currently in the middle of a $5.5 million building expansion

program, which started last summer. I was a member of the planning committee that worked

with the architect to define the functional requirements for new offices, classrooms, and

laboratory space. It is very strange to see our new building going up around us, and knowing

that we won't be occupying it.

The M.S.E. program started with two faculty members and 15 part-time students. We now

have 11 faculty members. We started the current academic year with 60 students,

approximately 30 full-time and 30 part-time. The support staff has grown from 5 to 25. We turn

away qualified applicants. We seem to be successful by every measure, except for the

continued financial support of our benefactor.

The M.S.E. Curriculum
The structure of the Master's program is illustrated in Figure 1. Prerequisites for the program

appear at the top in the shaded boxes. The prerequisite structure of the courses is indicated by

the arrows. Over the years the content of the courses has evolved, but we've not felt the need

to redo the structure. I think this structure has served us well and continues to do so.

Those of you who have only one or two software engineering courses on the books probably

look at this structure and say, "Gee, imagine the lUXUry of 11 courses. Boy, could we do

everything there isn't time to dol" But with the lUXUry of 11 courses comes the obligation of

feeling that you must do everything. We continually confront the issue of breadth versus depth.

How can a person graduate from Wang Institute without hearing buzzword X, Y, or Z? Fill in

your favorite buzzword. And that is the way the program began. It was very survey oriented

and broad brush in nature.

As time went by, we gained more confidence and began to understand what was truly

important. We worried less and less about whether students had heard buzzword X, or Y, or Z

and began to develop more depth and to do fewer things better. I think this is probably typical

of every new academic program.

Let me give a brief description of the curriculum. Prerequisites for the program include

knowledge of a modern programming language, data structures, discrete math, and assembly

language/architecture. In addition, an entering student must have at least one year of work

experience. We started with a requirement of two years work experience and changed it to one

year to see if we were discouraging otherwise well-qualified students from applying to Wang

Institute. In fact, our students have, on average, about five years of work experience. We have

only admitted one or two students with less than two years work experience, and in each case

they tumed out to be some of our weaker students. So, we feel that the work experience is very

important.

22

www.manaraa.com

One of the most important things we do with respect to admissions is to conduct an oral

admission interview with each applicant. I tell the students that the oral exam comes at the

beginning of our program, rather than at the end. These interviews usually last for one or two

hours. We try to determine the student's prerequisite knowledge in the various subject areas,

and we also assess their communication skills and their ability to think on their feet. The

procedure is quite time consuming for the faculty, but we are convinced that it is an extremely

important aspect of our admissions procedure. Last year, we interviewed 80 applicants and

admitted 32. The 80 applicants were selected from a pool of about 400. So you can see that

we were quite selective in our admission procedures.

The M.S.E. program consists of 11 courses. Each is a three credit semester-length course.

Six of the courses are core courses required of all students. Of the remaining five courses,

three are electives and two are project courses. The six core courses are Formal Methods,

Programming Methods, Software Engineering Methods, Systems Architecture, Management

Concepts, and Software Project Management. The major topics in each core course are

indicated in Figure 2.

Formal Methods is intended to cover formalisms that are important to software engineers.

We look to Formal Methods to supply the theoretical underpinnings needed for the remainder of

the curriculum. Mark Ardis, who has taught Formal Methods several times, refers to Formal

Methods as Wang Institute boot camp. In the beginning, we tried to cram way too much

material into the course. It is still very intense, as are all our courses, but we have pretty much

settled on abstraction, specification, and verification as the main themes of the course. Formal

languages/automata and analysis of algorithms get some coverage. I think we should have

more coverage of those topics than we are able to give them, but there isn't time to do

everything.

Programming Methods covers the pragmatic aspects of detailed design, implementation
techniques, and testing. Formal Methods is a co-requisite for Programming Methods. The two

courses are phased carefully so that students have been exposed to formal verification and

testing theory in Formal Methods before they get to the testing segment of Programming

Methods. Other topics are phased in a similar manner. For example, students learn the theory

of regular expressions in Formal Methods and the applications of regular expressions in

Programming Methods.

In Programming Methods, and in all of our courses, we place a strong emphasis on software

tools. In fact, we employ two Master's level people (two of our own graduates) to acquire and

install software tools, and to develop supporting materials for the software tools used in the

courses. Even though our students have, on average, four to five years of work experience,

they are usually not very familiar with software tools. It is not unusual for a student to learn

three or four new tools in a course. I think the emphasis we place on software tools is a truly

unique aspect of the Wang Institute M.S.E. program.

23

www.manaraa.com

Software Engineering Methods is concerned with analysis and design techniques. We tend

to think of Programming Methods as covering topics of interest to the individual programmer,

while Software Engineering Methods covers topics that typically involve teams of programmers

working on analysis and architectural design. In the beginning, Software Engineering Methods

was the catch-all course where we covered topics that hadn't received adequate attention in the

other courses. With passing time and more experience, we learned how to better integrate

those left-over topics into the other courses. At the same time, we realized, and our students

confirmed, that we were not spending enough time on analysis and design. So, we did a major

modification to Software Engineering Methods. In fact, we were planning to rename the course

Analysis and Design Methods to better reflect the content of the course.

Of all the successes we have had at Wang Institute, I would not claim that teaching our

students to be great software designers is one of them. This is not for lack of trying or for lack

of competent and talented instructors. I tend to think that Fred Brooks is correct when he says

great designers are bom and not taught [1]. Nevertheless, we continue to expose our students

to what is known about software design in the hope that a few great software designers will

emerge. At the least, our students understand the concepts on which different approaches to

software design are based, and they leam the notations and software tools that support

software design. As So Sanden (a Wang Institute faculty member) remarked, "It may well be

that great designers are bom rather than taught, but they do no grow into great designers by

themselves. Without training, they may become great hackers instead." Our students are

undoubtedly better software designers as a result of taking the Software Engineering Methods

course, but I don't think we know how to train great designers, any more than we know ~w to

train great programmers. It is interesting to observe that mechanical engineers, architects,

textile specialists, and other industrial design educators say that they don't know how to develop

great designers either. It is a very difficult problem.

Uke all the other core courses, Systems Architecture has evolved with passing time. The

original concept for the course was that it would be a capstone course sitting on top of a firm

grounding in architecture and operating systems. Our plan was for the Instructor of this course

to spend a lot of time on hardware/software design tradeoffs, networking, distributing

processing, and other advanced systems topics. In practice, we found that most of our students

were not prepared for this advanced course. Many of them were competent in architecture or

operating systems (at the graduate-level), but not in both. Given the diverse backgrounds and

goals of our students, we decided to let students satisfy the Systems Architecture requirement

by taking either a graduate level Operating Systems or Computing Systems Architecture course.

This seems to work well. Some students take one of the courses to satisfy the core requirement

and the other as one of their electives. They are then qualified to take the advanced topics

course (that we Originally envisioned as the core course) as one of their other electives, if they

so choose.

24

www.manaraa.com

Practically all of our students are educated and have work experience in science and

engineering. Most of them have never taken a business course, other than the required

Economics 101, in their undergraduate engineering program. The goal of Management

Concepts is to expose them to the management side of software engineering. The course

covers organizational structures, organizational behavior, finance and accounting, and topics

such as the roles of personnel departments, marketing and sales, research, and manufacturing

in a modern, high tech corporation. The students call it an MBA in 13 weeks. The course

requires a lot of reading and synthesis. It is very intense. Students complain that, compared to

their technical courses, the reading material is not very dense in concepts presented per page.

The material also tends to be rather subtle. Like Formal Methods, this course has too much

material for the time available. However, we have found it difficult to decide which parts to

delete.

The Project Management course covers techniques for planning, monitoring, and controlling a

software project. In addition, a fair amount of time is spent on the interpersonal aspects of

leadership and team building. The course is targeted at project sizes of 10 to 15 people working

for periods of 18 to 24 months. This is large enough that issues such as team structure,

baselines, change control, documentation, and'quality assurance become important, but not so

large that the bureaucratic issues of large projects dominate the discussion. Most all of the core

courses require the students to work in teams on term projects. In Project Management, the

students work in teams of 3 or 4 to develop comprehensive project plans for software projects.

Sometimes the projects are hypothetical, and sometimes they are projects that one of the

students is involved in at work or has been involved in at some previous time.

The elective courses are predominantly from the areas of computer science and

management, mostly from computer science because that's the background of most of our

faculty members. So, the electives are courses such as database systems, transaction

processing, knowledge-based systems, user interfaces, local area networks, compilers, and
operating systems. But we try to put a software engineering flavor into those courses, and to

have term projects that involve the students working in teams to build things and experiment

with them. As a consequence, we have not been able to use adjunct faculty members to do

elective courses in the way you might expect. We feel it is important for the full-time faculty to

do the electives, because the full-time faculty members understand the core courses and the

philosophy of our curriculum.

We do have two or three adjunct faculty members, who do specialized courses for us that

they have developed over time in the Wang Institute environment. For example, we have a very

nice course in technical communication, which is taught by a professional technical writer who

works in the software industry. All of his examples center around requirements specs, design

documents, user manuals, and other types of material appropriate for software engineers.

25

www.manaraa.com

There is an interesting aside with regard to that course. It is a very effective course. Students

improve their writing and presentation skills tremendously by taking the course. But there are

those among our faculty who think that the material is not appropriate graduate-level material;

the intellectual challenge is not particularly great. My response is that we should think of

software engineering as a professional discipline rather than a traditional academic program.

Certainly there are lots of things that happen in law and mediCine, and in dentistry and business

schools that are not academically challenging but are nevertheless important to the professional

development of the students.

Before I move on, let me say a couple of words about the project courses. We require two

project courses (six credit hours) in place of the traditional Master's thesis. Students are

required to work in teams of 3 to 7 and to apply good software engineering practices to the

development of a software product. They conduct milestone reviews, practice baseline control,

and do a formal presentation of their work at the end of the semester. It took a long time for us

to leam how to teach the project courses in an effective manner. Some of our wisdom about

teaching project courses has been documented in Bill McKeeman's paper for last year's

meeting and John Brackett's paper for this meeting (see references [2] and [3]). I think the main

keys to success for project courses are up-front preparation of the project requirements and the

software environment by the instructor, identifying and sorting out of the roles to be played by

the students and the instructor, and recognition that teaching a project course for 3 to 7 students

is an equivalent work load to doing a much larger lecture course. The factors that contribute to

success for student projects are not all that much different than the success factors for "real

world" projects, by the way.

It is possible for a student to complete the program in 11 months. That requires the student

to take four courses in each of the fall and winter semesters and three courses in the summer

semester. It is important for the industrially sponsored, full-time students to be able to complete

the program in one year. However, this approach requires that faculty members teach year

round, which leads to problems of faculty burn-out and lack of concentrated time for research.

I want to make a couple of comments about the tailoring of this curriculum to local situations.

That's a point that has not been addressed very much but has always been a strength, in my
mind, of this particular structure. There are three methods courses: Formal Methods,

Programming Methods, and Software Engineering Methods. Those courses concentrate on the

technological aspects of our discipline. Depending on how you slant the program, the

underlying concepts will be the same, but the examples used and the methodologies discussed

might be quite different in different settings. So, the actual day-to-day content might differ in a

business school teaching information systems applications from that in a EE Department

specializing in embedded systems; however, the structure of the curriculum would be the same.

Also, the two project courses and three electives can be tailored and moved in whatever

direction you might choose.

26

www.manaraa.com

Legacy
Figure 3 shows the number of graduates over the years. We were pretty much in steady

state of admitting and graduating around 30 students per year. This year, we will graduate

around 40 students because some students have accelerated their programs in order to

graduate before the School disappears. If everyone performs as expected through the summer,

we will have graduated a total of 121 students. Then there are the 5 or 6 I mentioned who may

finish up in a semester or two. So, Wang Institute will have produced around 125 Master's of

Software Engineering during its lifetime.

Figure 3 illustrates the five year plan that was done in 1985. We have already seen a trend to

more full-time students than we anticipated. That's because industry is sending more and more

full-time sponsored students. We take that to be a testimonial that we are doing something of

value. So, I think by 1990 the numbers of full-time and part-time students might have flipped to

be more like 45/25 full-time/part-time, rather than the other way around.

We have had numerous discussions among the faculty about the desirability of having part

time students. We offer no evening courses at Wang Institute. We want the students to be

awake and attentive when they come to class. Also, we want them and their managers to

recognize that attending Wang Institute is a serious commitment of time and energy. Even so,

part-time students have more demands on their time than do the full-time students, and their

educational experience is undoubtedly less fulfilling than that of the full-time students who

spend considerably more hours per semester at the Institute. However, the part-time students

often have a pressing need to cut to the heart of an issue, and they usually try to relate the

material they are learning to their immediate work situation. This results in some very

interesting discussions and brings a strong dose of reality to the classroom. On balance, I think

most of the faculty are convinced that the part-time students are a positive influence on the

program, although there are differing opinions on this issue.

The Ph.D. Program
I want to say a few words about our planned Ph.D. program (see Figure 5). For breadth, we

planned 12 graduate courses, including the six MSE core courses, which map into four areas of

study. We expected that the 12 courses would be spread among the four areas of Software

Engineering Methods, Software Engineering Management, Quantitative Methods, and

Computing Technology. A minimum of two courses in each of the four areas would have been

required, with the remaining four courses concentrated in one area or spread across the areas

as determined by the student and the faculty advisor. The six MSE core courses plus three

well-chosen electives in the MSE program would leave three courses to be completed beyond

the Master's degree for the Ph.D. breadth requirement.

We expected that depth of knowledge would be obtained, as it usually is in a doctoral

program, through a combination of courses, seminars, directed studies, and individual study.

We saw a wide range of possible topic areas for dissertation work, including theoretical studies,

27

www.manaraa.com

development of exemplar software artifacts, experimental wor1< (perhaps involving human

subjects), and analyses based on comprehensive case studies.

We went through a long series of discussions about the proper title for the doctoral degree.

Should the graduate be called a Ph.D.? a Doctor of Software Engineering? a Professional

Software Engineer? In the end we decided that in time we might have more than one doctoral

degree, but that the first one should be a Ph.D. because we believe that software engineering

Is a credible intellectual discipline. To do anything else would imply that our discipline is not on

par with other disciplines. I think there is a need for the traditional, research oriented Ph.D. and

also for the professional engineer or doctorate degree. But we decided our first doctoral

program should be a Ph.D.

What Went Wrong?
What went wrong? Academically, I think nothing. I, and a lot of other people (including our

Academic Advisory Committee), thought we were right on target. We had recruited and built an

excellent faculty. We had reached steady state with the Master's program. We were ready to

start the Ph.D. program.

What went wrong financially? Again, I think nothing was wrong within the Institute. Dr. Wang,

from the very first meeting of the Advisory Committee, understood the likely cost of the Institute.

We made it clear that the Institute would be a very expensive undertaking and that it would

probably never be a self-sustaining operation. In 1979, he said words to the effect, "I want to

build it fast and I want it to be of high quality: You don't have to be an experienced

administrator to understand that building a new academic institution and a new educational

program rapidly, and of high quality, is an expensive undertaking. He told us that cost was not a
constraint. I think we used the resources available to us in a responsible and responsive

manner.

We have received no statement from Dr. Wang concerning his reasons for selling the Wang

Institute facility to Boston University, other than a brief press release that said the original goals

in founding Wang Institute had been achieved and that the Wang family now wanted to spread

their philanthropy over a broader range of areas. The announcement that the School of

Information Technology would be closed was contained in the press release. So, we can only

speculate as to his real reasons. It is no secret that Wang Laboratories has fallen on hard times

in the past couple of years. The Lab has undergone several layoffs and salary reductions.

Although Wang Institute was an independent, non-profit corporation, our resources were

ultimately tied to the fortunes of Wang Labs.

In December, 1986 we were asked to reduce our operating budget by 10 percent, for the

remainder of the fiscal year, which ends on June 30. We did so, without too much pain. On

February 25, 1987, Dr. Wang convened a meeting of the faculty and staff. I thought we were

going to get a pep talk. I thought it was going to be "Times are hard. Hang in there. We

28

www.manaraa.com

appreciate everything you're doing. We'll pull through this together." Without any forewarning,

an aide to Dr. Wang read the above-mentioned press release stating that the facility had been

sold to Boston University and that the School of Information Technology would be closed and

the Master's program in software engineering terminated. The announcement was greeted with

stunned silence.

The president of the Institute found out the night before the meeting exactly what was to be

announced. He knew something was afoot, but he learned the exact details the night before. I

was out of town the day before the meeting and was told by the president the next morning, two

hours before the general announcement. So, it was totally unexpected, and totally inconsistent

with Dr. Wang's past behavior. Dr. Wang is a well-known philanthropist and patron of the arts in

Boston. He has been a long-term contributor to Harvard. He made statements about Wang

Institute being one way in which he could repay the New England region for his good fortune.

He often, until recently, talked about what Wang Institute might be in 100 or 150 years.

Summary Comments
On a personal note, the hardest part for me is the break-up of our faculty team. It was a long,

slow process to put together a faculty who enjoy working together and who are extremely

effective at what we do. We determined the content of the core courses by a consensus

process, and once we came to an agreement, we were pretty rigid about the content of those

courses. But there were also the elective and project courses which gave faculty members an

opportunity to pursue their other teaching and research interests. It was a nice combination.

The core gave us a focal point for common interests and provided common goals while the

electives and projects gave each of us an opportunity to pursue our own interests and exercise

our academic freedom in choosing additional areas for teaching and research.

Speaking of research, I want to say a word or two about that. People have said that Wang

Institute is a teaching institution, and certainly that is true. We valued and rewarded good

teaching. But it is not true that we did no research. You could not evolve a program like ours

and develop the course materials to the depth we did without being involved in a lot of primary,

as well as secondary, research activity. We haven't published a lot because we were up to our

ears in alligators during the start-up phase. With the planned Ph.D. program, most of the faculty

were antiCipating the opportunity to reap the benefits of the investment we had made and to

clear a backlog of planned research and publishing.

What are the prospects for similar institutes? I doubt that there will ever again be a situation

so amply endowed as we were to offer a professional degree program in software engineering.

But I'm confident that professional degree programs in software engineering can and will

flourish, probably with higher student/teacher ratios and with emphasis on externally funded

research. I think there is great potential for industrial support for programs such as this one. I'm

confident that we will see other programs and that there is a future for software engineering

education. I hope to be part of that future.

29

www.manaraa.com

I think I'd better stop here. Time for a couple of questions?

Questions and Answers
Q: You have a good reputation and there are probably enough businesses around to support

you. It seems to me you could say to Boston University, "Why don't you let us continue with the

reputation we've built, get some financial support from local industry, and continue what we're

doing?"

A: There are a couple of answers to that. The first is that this transaction occurred at the

level of Dr. Wang and President Silber of Boston University. Neither of them know anything

about software engineering education. It was a business deal. BU bought our facility as a

satellite campus for continuing education programs. They have other plans for the facility, and

our program is a liability to them. Second, there was no opportunity for any academic person

inside BU to say, "Yeah, I think that's a viable operation.· We had no champion to argue for us.

The deal was done before anyone at Wang Institute or Boston University had a chance to react.

So, the software engineering program is dead in the Tyngsboro location.

Q: You spoke of accreditation. How did you find your curriculum to be received by people

like ABET?

A: Thanks for reminding me about accreditation, because there are a couple of points I want

to make about that. But first, let me answer your question. Graduate programs are not

accredited by the professional societies, and the regional accrediting agencies accredit

institutions rather than particular programs. Our accreditation was from the New England

Association of Schools and Colleges (NEASC). Because there was only one degree program in

our school, it was pretty hard to accredit the institution without examining the MSE program.

Nevertheless, NEASC was primarily concerned with issues such as the quality the library, the

qualifications of the faculty, the financial stability of the institution, and not so much with the

content of the Master's program.

But the point I want to make, and I'm glad you reminded me, is that I feel the ultimate

responsibility for our situation lies with the accrediting agency. The accrediting team that visited

the Institute produced a report listing seven major things that should be done in order for us to

receive accreditation. I don't remember all of them, but they were things like hire more faculty

members, which we did; hire a tull-time preSident, which we did; and provide for the long-term

financial stability of the Institute, which didn't happen. Until the time of the accreditation visit, Dr.

Wang was the president of Wang Institute. As a result of the accreditation report, he hired Ed

Cranch, who was the president of Worcester Polytech and before that Dean of Engineering at

Cornel" to be our president.

The capital and operating tunds for the Institute came directly from the Wang family; we had

only Qsmall endowment, although it was understood that Dr. Wang would leave his personal

30

www.manaraa.com

fortune to the Institute upon his death and that it would provide the long-term endowment. Dr.

Wang did not follow the NEASC recommendation concerning financial stability of the Institute. It

was the only one of the seven recommendations that did not receive a prompt response. Dr.

Wang chose to ignore it, and NEASC chose to let it go. In retrospect, that was a mistake.

NEASC should have insisted on financial stability. But, on the other hand, Dr. Wang is a former

member of the State Board of Regents in Massachusetts; he is a long-term benefactor of

Harvard University; and he had his personal reputation as well as his considerable fortune

behind the Institute. No one, including me, was terribly concerned that he hadn't made long

term provisions. But we sure wish now that NEASC had been tougher on this issue. And I think

NEASC does too, as a matter of fact.

0: Two questions: Where does your library go? And secondly, do you think it would be a

good way to go in the future, to have schools of software engineering, like business schools or

schools of social work, that is, separate professional schools within academic institutions?

A: Concerning the library, it is uncertain whether it will be sold or absorbed into the BU library

system. The cost of developing the library to its present point is about $250,000. Of course, it

would cost much more to recreate it at today's prices. So, it is a considerable asset for Boston

University; but I don't know, and I don't think they know what will become of it at this time. It's a

great resource. It would be sad to see it split up or diffused into another collection.

As for the issue of professional schools, I think that's exactly how software engineering

education should go. We are a discipline in search of a home. We are not computer science.

We are not business. We are not engineering, at least in the traditional sense. But certainly,

we draw on each of those camps, as well as several others. I also think the emphasis on

professional practice, staying in touch with industry, technology transfer - all those issues do not

fit under the traditional academic umbrella. I truly believe that profeSSional schools are the way

to go in the future.

0: It seems to me that you should have been able to justify your existence on the basis of

benefits provided to industry. You should have been able to translate that into direct support,

through tuition fees and from the corporate sponsors of the individual students. Did you ever try

that, or do you think it might work again?

A: When times were good, Dr. Wang was giving four million dollars to the Performing Arts

Center in Boston, five million to Harvard, and four million to operate Wang Institute. It was

pretty hard to go to other people and say, "Dr. Wang needs help with this program.· We didn't

see the need for it. And then, in the end, the time was too short. Now, we are all out looking for

jobs. There just isn't time enough to hold the faculty together and put together a base of

support that would allow us to continue. With six months or a year lead time, I'm confident we

could have done it. But not under the present conditions.

31

www.manaraa.com

Thank you very much for your attention.

Acknowledgements
The quality of an academic program is directly proportional to the quality of the faculty that

offer that program. The opinions expressed herein are mine, but the factual account is based

on the accomplishments of Mark Ardis, Phil Bernstein, John Brackett, Billy Claybrook, Dick

Fairley, Hassan Gomaa, Dave Lomet, Bill McKeeman, Gary Perlman, Sri Raghavan, and Bo

Sanden. Former faculty members Jim Bouhana, Susan Gerhart, and Nancy Martin made

significant contributions to the software engineering programs at Wang Institute.

References
[1] Brooks, F.P. Jr. "No Silver Bullet: Essence and Accidents of Software Engineering."

COMPUTER, Vol. 20, No.4, April, 1987.

[2] McKeeman, W.M. "Experience with a Software Engineering Project Course." Software
Engineering Education: The Educational Needs of the Software Community, N. Gibbs and

R. Fairley, Eds., Springer-Verlag New York, 1987.

[3] Brackett, John "Performing Requirements Analysis Projects for External Customers."

Educational Issues in Software Engineering, R. Fairley and P. Freeman, Eds., Springer-Verlag

New York, 1988.

Appendix
Several relevant events have occurred since this paper was delivered in May, 1987. Forty

students did in fact graduate with M.S.E. degrees on August 9. It appears that six additional

students will be able to complete their M.S.E. degrees by taking their remaining elective

courses at Boston University. Three faculty members moved to George Mason University in

Fairfax, Virginia, to start a graduate-level software engineering program in the School of

Information Technology and Engineering. One faculty member joined the School of Engineering

at Boston University and Is developing a software engineering program there. Another faculty

member is at Bentley College, where he is developing courses in software engineering. One

faculty member joined the Software Engineering Institute of Carnegie-Mellon University, where

he is working on software engineering curricula. Another faculty member is at Harvard

University on a visiting appointment. The remaining faculty members are working in industry.

The library has been transferred to the School of Engineering at Boston University.

32

www.manaraa.com

<p'~~~~~~::;:
::~: : : ~ :~~t~:~:: : ~ :~:~ ,

Soft. Eng. I--~~
Methods

Elective Project
I I

Elective Elective Project
II III II

Legend: Vertical arrows denote prerequisites.

Mgmt.
Concepts

Project
Mgmt.

Hor1zontal arrows denote co-requisites

1::«1 denotes prerequisite to the program

Figure 1. Course Prerequisite Structure

33

www.manaraa.com

• Formal Methods
• abstraction
• specification
• verification

• Programming Methods
• design
• implementation
• testing

• Software Engineering Methods
• requirements analysis
• functional specification
• software design

• Operating Systems! Architecture
• processor design
• memory management
• resource allocation

• Management Concepts
• organizational structures
• organizational functions
• individuals in organizations

• Project Management
• project planning
• monitoring and controlling
• leadership

• August 1982:5

• August 1983:14

• August 1984:15

• August 1985:17

• August 1986:30

• August 1987:40
• Total: 121

34

Figure 2.

Core Courses

Figure 3.

MSE Graduates

www.manaraa.com

Figure 4.

Five Year Plan (1985-1990)

1990 Goals:

• 25 full-time MSE students

• 45 part-time MSE students

• 10 full-time Ph.D. students

• 15 regular faculty

• 3 visiting faculty

FigureS.

The Planned Ph.D. Program

• Breadth
• 12 graduate courses
• 6 from MSE core
·4 areas

• SE Methods
• SE Management
• Quantitative Methods
• Computing Technology

• Depth
• courses
• seminars
• directed studies

• Dissertation Areas
• case studies
• exemplar artifacts
• experimental studies
• theoretical studies

• Research Orientation

• software technology

35

www.manaraa.com

SECTION II

REFEREED PAPERS

Section II contains 23 refereed papers presented in four parts:

- Part 1: Undergraduate Software Engineering Education

- Part 2: Teaching Project Courses

- Part 3: Graduate Level Software Engineering Education

- Part 4: Industrial Education and Training

An introduction to each Part is presented at the beginning of the Part.

www.manaraa.com

SECTION II

PART 1

UNDERGRADUATE SOFTWARE ENGINEERING

EDUCATION

The six papers in this Part are concerned with teaching software en
gineering concepts to undergraduate students. Emphasis is primarily, but
not exclusively, on teaching software engineering concepts to students ma
joring in computer science. Topics presented in Part 1 include undoing the
sequential mindset; introducing reviews, prototyping, and frequent mile
stones; using software tools in a workstation environment; a first course in
computer science that emphasizes mathematical principles of software en
gineering; a support tool for teaching computer programming; and a survey
of undergraduate software engineering courses.

The paper, "Undoing the Sequential Mindset: The Software-CAD Ap
proach," was written and presented by Professor Ray Buhr of Carleton
University. A synopsis of his presentation and the ensuing question/answer
session are included at the beginning of Part 1.

www.manaraa.com

Synopsis of Presentation

Prof. Ray Buhr

Professor Buhr presented the main points in his paper, tied them into
some of the other presentations at the Workshop, and provided some of the
background and rationale for the ideas presented in his paper. Among the
points he made in his presentation were the following:

• Agreement with Al Pietrasanta on the difficulty of teaching software
engineering to practitioners. Seems to be a matter of mindset, found
even in young programmers after the first few courses.

• Paper describes an approach, Software CAD, to overcoming the mind
set. Professor Buhr has been experimenting with the approach in his
teaching.

• A key problem is the "sequential mindset" that stems from first in
troducing students to older, sequential languages. This leads to "pro
gram carpenters" who think only in terms of monolithic, sequential
programs that have little or no significant architectural context.

• The essence of Professor Buhr's approach is to introduce students at
an early stage to an architectural way of viewing software which is
compatible with both sequential and concurrent models of computing.

• Another important stumbling block is the difficulty of thinking about
concurrent programs on the basis of sequential concepts only.

• His approach is based on introducing beginning students to what he
perceives as the three aspects of software: Structure, interaction, and
function.

www.manaraa.com

• Traditional programming ("carpentry") only really addresses the func
tionality aspect. His approach advocates starting students out by
teaching them on the basis of a model of interconnected machines.

• The approach also requires a good graphical notation.

• A programming language must be used which incorporates the no
tions of interconnection found in the graphical language and the un
derlying model of interconnected machines.

• The final aspect of his approach requires support for these notations
- this is the Software CAD aspect.

• The approach fosters a total system viewpoint, encourages learning
good software design principles, prevents formation of the sequen
tial mindset, and fosters a mindset appropriate for the real world of
concurrent systems.

• The approach casts programming in an engineering framework.

• After students' intitial reaction, they usually become very strong ad
herents to it and even advocates for it.

• This approach treats software somewhat like hardware. Professor
Buhr disagrees with the view that software is fundamentally different
from hardware, citing examples such as concurrency.

• Several examples and illustrations of the approach, taken from his
own teaching, were provided by Prof. Buhr.

• Modula 2, picked initially because it was the closest available substi
tute for Ada, has turned out to be a very good teaching language.

• Additional work is needed on the approach-methods, textbooks,
support tools, etc.

42

www.manaraa.com

Questions for Ray Buhr

Peter Freeman: Could you elaborate on your comment about a
forthcoming software CAD support system?

Raymond Buhr: Only very briefly. First, there is some work going
on, to port CAEDE to a PC, so that hopefully something will happen
within the next six months to a year. There are a surprising number of
graphical-based tools for Ada popping up. At ICSE 9, I spent quite a bit
of time sitting in front of screens, looking at products that people had or
that were about to come out, and it looks like there's been a ground swell
of enthusiasm for the use of graphics and CAD approaches to software.
Also, I am working with a company, which has an environment for building
graphics interfaces or graphics-CAD tools to get some of my new ideas into
the PC world-which is what universities can afford at the introductory
level.

Peter Freeman: Of those tools that were available, are they sufficient
to support the kind of approach that you've been using or are they just the
first step and not really there yet?

Raymond Buhr: Well, some of them look to be almost there, but
others are still in the development stage. Within a year or so, there should
be some systems that are candidates, but it depends on whether people can
fulfill their expectations of development times or not.

Dan Hoffman: In your paper and talk, you say that programs written
in Basic or Fortran or Pascal or C are sequential and monolithic. I'm
completely confused by that, because I've seen programs written in those
languages, that are divided into the kinds of modules you talked about, and
I've seen programs written in Modula 2 and Ada that are sequential and
monolithic.

Raymond Buhr: I absolutely agree. You can certainly build modular
programs in Pascal or C, but you have to have learned something about

www.manaraa.com

software engineering first. The people who write those programs are usually
at a higher level. They've learned how to program. Moreover, they have
taken courses in software design or have learned it somehow, and then, they
eventually write good modular programs. The whole point is the interfaces
and the interactions, rather than the algorithm or the way that you write
the functional aspects.

The issue is that students are under pressure to write programs in in
troductory courses in languages like Fortran, Pascal, and C; they form a
model of computing, which doesn't include these nice attributes, because
they don't know about them yet. In introductory courses, you are taught
that flowcharting is the way of designing programs. I'm presently teaching
a software methodology course now, to a group of 4th year students at UC
Santa Cruz, and we were talking about this business of partitioning systems
into modules and the design issues involved and all that kind of thing. I
presented two views of a program to some of my students; one was a very
sequential shared data design and the other was a highly modular design.
Then, I asked students how many would have come up with the highly
sequential shared data design as a result of the way that they had learned
programming. Almost everybody said they would have. They thought in
flow chart terms. Those languages simply do that. Unless you've got a
construct in the language that has a notion behind it, beginning students
do not pick it up.

Dan Hoffman: It sounds like what you're saying is that it wasn't the
choice of language that was wrong, it was the choice of pressures that was
wrong; the students should have been pressured to split it into modules.

Raymond Buhr: That's certainly a part of the argument that I'm
advancing. They should be pressured to put things into modules. However,
I'm a great believer in languages, as thought-structuring artifacts. People
argue that you can say anything in French that you can say in English, but
they are very different languages; they have different cultural connotations
to them. Modula 2 and C are very different languages; they have different
cultural connotations to them as well. A language defines a cultural frame
work in which you think. My experience with many students is that those
who learn in languages like Basic, Fortran, and C have a mindset, which
does not make it easy for them to acquire design notations.

44

www.manaraa.com

Undoing The Sequential Mindset:
The Software-CAD Approach

Raymond J.A. Buhr
Systems and Computer Engineering,
Carleton University, Ottawa, Canada

February 12, 1988

Abstract

This paper proposes a non-traditional approach to teaching programming, charac
terized here as the "Software-CAD" approach, which is particularly appropriate for
students in professional computing programs, such as computer engineering, who need
to acquire as early as possible a "total systems" view of computing embracing both
hardware and software, and which can help to instil in any type of student good no
tions about program design. In this approach, programming is taught from the start
in terms of a model of interconnected machines, using a graphical notation rooted
in a an appropriate programming language (e.g., Modula2 or Ada) and supported
by Software-CAD laboratory tools. Such an approach helps to undo the "sequential
mindset" which traditional ways of teaching programming in languages such as For
tan, Pascal and C tend to impart. The pap'er outlines a set of courses following the
approach and points to successful experience with prototypes of some of the courses at
Carleton University and U.C. Santa Cruz, using both Ada and Modula2 (though not
yet with supporting CAD tools), to indicate that the approach is feasible and promising
and that students accept and like it. Although the approach can be followed without
CAD laboratory support, such support is desirable for reasons of self-motivation and
efficiency; appropriate support is expected to be available soon.

1 Introduction

I propose a non-traditional way of teaching programming, which I call the "Software
CAD Approach". My experience suggests this approach may have advantages over more
traditional ways, at least for certain classes of students. The approach is particularly
appropriate for students in programs such as computer engineering, who need to develop
mental models of computing embracing both hardware and software. For brevity, I shall
refer to this viewpoint as the "total systems viewpoint". The novelty of the approach lies

www.manaraa.com

in its use of programming courses to instil the total systems viewpoint, starting from the
first introductory programming course.

Although my motivation in developing and promoting the approach has been primarily
my perception of the need for it in Computer Engineering programs, it seems likely that it
may also be a good, general approach to teaching programming in a way that will prepare
students faster than traditional approaches for the world of large programs, multi-person
projects, embedded systems, distributed systems, software/hardware codesign and silicon
compilation.

The purpose of this paper is to convince readers of the desirability and feasibility of
teaching programming via the Software-CAD approach, and thereby to encourage further
development of the approach. The paper motivates and then describes the approach,
recounts experience indicating it is desirable and feasible, suggests the outlines of a series
of courses to teach it, and indicates the nature of the laboratory support and teaching
materials required.

These proposals are rooted in my experience developing and teaching the CAD ap
proach for Ada (Ada is a trademark of the U.S. Department of Defense) [1,2,3,4,5,6];
designing and teaching courses for a BEng program in Computer Systems Engineering
at Carleton University, which has produced two graduating classes whose members have
found strong acceptance in industry; participating in planning software engineering courses
for the new Computer Engineering program at the University of California at Santa Cruz;
and teaching an introductory course there following these ideas, using Modula2.

2 The Central Ideas

2.1 An Analogy
A good way of characterizing the difference between my proposed approach to teaching
programming and the traditional one is to draw an analogy between programming on
the one hand and the activities and training of architects and carpenters who design and
construct buildings on the other. An architect draws plans; a carpenter implements the
plans at the level of boards and nails. An architect thinks in terms of form and its relation
to function; a carpenter thinks in terms of cutting boards and nailing boards to other
boards. An architect has to be a total systems thinker; a carpenter does not. An architect
is a professional; a carpenter is a tradesman. Architects are not trained by starting them
out as carpenters, because this would not foster an architectural viewpoint. Carpenters
may become architects, but much additional training would be required.

Traditional approaches to teaching (and often to doing) programming are closer in spirit
to program carpentry than software architecture. Yet software architects are needed, who
think in terms of form and its relation to function in software, just as architects do for
buildings.

I am not suggesting that this notion of software architecture as distinct from program

46

www.manaraa.com

carpentry is new or that software architects do not exist in the professional community.
What I am suggesting is that the time is ripe to start training software architects as such
from the beginning, starting with the first programming courses.

2.2 Software Architecture

Figure 1 conveys the idea of software having three aspects: structure, interaction, and
function. The aspects of structure and interaction correspond roughly to what I have
referred to as "form" in building architecture. The aspect of function is concerned with
the details of the work the program has to do.

Software architecture is primarily concerned with form and its relation to function.
Program carpentry is then concerned primarily with implementing function.

If we are to teach software architecture in a way that fosters total systems thinking,
we need notions of form embracing both hardware and software. Fortunately, such notions
exist and are intuitively natural. The central idea is of black boxes with interfaces, which
may interact with other black boxes with compatible interfaces. The notion of a black box
conveys the idea that its inside is invisible at the interface level. The notion of interface
needs to include the possibility of multiple interaction points with well-defined connection
properties and interaction semantics, like the multiple connectors on chips and boards.
Procedures are not enough. Fortunately, newer programming languages include black-box
like objects of exactly this kind (for example, packages in Ada and modules in Modula2).

As in building architecture (and hardware design), form is naturally expressed graph
ically. However, the specific requirements above eliminate from consideration many tra
ditional graphical methods of describing programs, such as flow charts, Yourdon-type
structure charts, HIPO diagrams, Jackson diagrams, and so forth. Further discussion of
this issue will be found in [6]. Examples of a suitable notation are given later.

Thus, teaching tools for software architecture include appropriate graphical notations
and appropriate programming languages. However, although these can be used to in
troduce more advanced students to software architecture, they are not sufficient at the
introductory level.

2.3 The Software CAD Approach

The feasibility of teaching software architecture from the start depends on being able to
reduce the program carpentry aspect to manageable proportions. Program carpentry tends
to dominate students thinking and activity in traditional programming courses. Needed
are laboratory support tools which take over some of the carpentry aspects, freeing the
students to think in terms of form, draw their thoughts on a workstation screen and have
a program framework automatically produced into which functional fragments can later
be inserted by traditional program carpentry methods. This is what I call the Software
CAD approach.

47

www.manaraa.com

Recent developments in programming languages, personal computers and Software
CAD environments appear to be converging to make the Software-CAD approach feasible
soon in a university teaching context.

2.4 The Sequential Mindset

The lack of a software architectural viewpoint in traditional ways of introducing program
ming makes it difficult for students to form broad enough mental models of the nature of
computing.

I use the term "sequential mindset" to characterize the limited mental model of com
puting that tends to form naturally and spontaneously when learning to become a program
carpenter with older languages like Basic, Fortran, Pascal and C. Programs in these lan
guages are monolithic, sequential artifacts, without significant architectural content in the
sense defined earlier. Preoccupation with the details of their carpentry tends to embed
in the students' minds a mental model of all software as like these programs and fails to
provide a mental model of computing appropriate for a total systems viewpoint.

A key in undoing the mindset is to provide an architectural view of software compatible
with both sequential and concurrent models of computing. This can be done at an advanced
level, as is usually the case in current teaching practice, or it can be done from the start,
as proposed here.

2.5 Programming Can Provide the Mental Models for a Total
Systems Viewpoint

The basic idea is to lead students naturally towarding thinking about software and hard
ware in a unified fashion by starting them programming from the beginning in a software
language which has the capability to define hardware-like components and then later to
treat design of software, hardware and systems in a unified fashion at a higher level of
abstraction by analogy with things they have already seen in this software language.

The two requirements of the software language are (1) the ability to define black-box
like components and (2) the ability to have concurrency among components (including both
synchronous and asynchronous concurrent behaviour). These are two key characteristics
of hardware which students encounter immediately in introductory courses on digital logic,
but which are deferred till much later in software. Often they are never treated in a unified
manner on the software side until graduate school. To avoid prejudicing the discussion
towards a particular language, I shall refer to the class of such languages as Black Box
Concurrent, or BBC.

The concurrency aspect would not be taught in the first programming course, but it
is important to have the ability to move naturally from programs in which black boxes
execute sequentially to ones in which they can be concurrent, without having to unlearn
anything already learned.

48

www.manaraa.com

Unfortunately, none of the common teaching languages are of much use for this purpose,
because they contain neither good facilities for defining black-boxes nor any direct means
of expressing concurrency.

Although the idea of black-boxes can be introduced in a conventional programming
course, without language support they have little practical reality to students interested
in getting assignments done quickly.

As for concurrency, the use of a language supporting it provides the only reasonable
pedagogical tool for introducing it early. Concurrency is usually regarded as complex
subject. However, much of its complexity lies in the traditional tools for implementing
it, not the essential material. The usual ad-hoc combination of an ordinary programming
language and an operating system or real time executive confronts the student with a
bewildering array of mechanisms and manuals which appears to be, and is, very complex.

In any case, operating systems courses, where this kind of material is usually introduced,
do not provide the right kind of background in concurrency early enough to serve the
purpose. Postponing treatment of concurrency in software until the study of operating
systems is surely putting the cart before the horse. Concurrency should be treated as a
basic issue early in software courses, just as it is in hardware courses, to avoid a sequential
mindset developing. Operating system courses can then build on this background.

2.6 The Importance of an Early Start

There are two reasons for starting early in the educational process with this approach.
The first reason is the shallow rooting of the sequential mindset in first and second year

students. My research and teaching experience with the Software-CAD approach for the
Ada language [1,2,3,5,6) and more recently with Modula2 has convinced me that students
in which the sequential mindset is not too deeply rooted find it very logical and natural
to view software in this way and quickly become enthusiastic about it. The deeper rooted
the sequential mindset, the more difficult it is to get this view across.

The second reason is leverage. To affect the way things are done in industry, one
must send to industry students who are missionaries for change. The Unix/C combination
provides an example; its move into the industrial world was triggered by university students
taking their enthusiam for it into industry.

This obviously requires that the Software-CAD approach be one about which students
can and will become enthusiastic. Experience with my own students who have become
missionaries for the introduction of this approach into industry even before any CAD tools
are available suggests that it is one about which students will become enthusiastic.

49

www.manaraa.com

3 Experience Using Elements Of The Software CAD
Approach

3.1 Experience With A Prototype Introductory Modula2 Course

A prototype introductory programming course for computer engineering students using
elements of the Software-CAD approach was tested in the winter of 1987 on a small group
of students at U.C. Santa Cruz. The course used the Modula2 language and a graphical
notation called "machine charts" which is a simplification and modification of an earlier
notation I developed for design of concurrent Ada programs [1,6]. Some examples of
material from this course will convey the flavor of what I propose.

Figure 2 shows a machine chart given to the students as an example of the external rep
resentation of a program module. It represents a simple counter as a module machine with
multiple, push-button-Iike action machines (procedures) to perform counter functions. In
the course, the evolution of the counter design proceeds through a number of intermediate
diagrams not shown here to the final diagram shown in Figure 3. Normally, all this detail
would not be shown in a single diagram and some of it would not be shown at all, because
it unecessarily displays information which is implicit; all of it is shown here only to illus
trate the notation. The resulting Modula2 program is shown in Figure 4, to illustrate the
correspondence between the notation and the program text. Note that this example does
not illustrate the principle that a "picture is worth a thousand words", because this very
simple program is almost all structure and interaction, exactly those aspects which are
conveyed in the picture. In more realistic examples, the structure and interaction aspects
are often buried under much functional detail in the program text.

Figure 3 illustrates some notions which are useful for imparting an easy to understand
architectural viewpoint of sequential programs, and which also pave the way for treatment
of concurrent programs in a similar fashion. The central notion taught is of machines
with interfaces and engines. Engines are sequential machines, which are the only active
parts of programs. Sequential programs are presented as compositions of machines which
interact with each other in such a way that only one engine at a time can run. Briefly,
the explanation is as follows: engines of server module machines run only at initialization;
the engine of the (necessarily) single master module machine starts running after that
and henceforth controls program behaviour; the engines of procedure machines run only
when triggered by an interaction; and interactions are interlocked, such that the engine at
the calling end pauses while the procedure machine's engine performs a requested action.
Procedure machines are introduced in their interface aspect first as pushbutton-like objects
which can be used to perform actions. Concurrency is easily included in this model by
relaxing the constraint that there be only a single master machine.

The prototype course using these notions was taught without software CAD tools, so
machine charts were drawn by hand on the blackboard and on paper and manually con
verted into Modula2 programs (the figures reproduced here are from a diagram-drawing

50

www.manaraa.com

system used by the author rather than a software-CAD system used by the students). This
manual approach did not relieve the students of any program carpentry responsibilities,
as advocated earlier, and there was no suitable textbook to get the viewpoint across at
an introductory level, so it was not possible to accept students without any programming
preparation; some facility in Pascal was required as a prerequisite, to free the course from
having to teach the Pascal-like parts of Modula2. Experience showed that this Pascal back
ground had already given some students a sequential mindset which was hard to undo; it
was very difficult to persuade these students that programs should not be monolithic arti
facts and that every new module introduced in a design should not include the functionality
of the entire program. In such cases, great persistence is required by the instructor to get
the ideas across. However, most students were able to overcome their sequential mindsets
by the middle of the course and to gain some significant software architecture experience
during the latter half. Some students became quite adept at design by the end of the
course.

The idea was introduced early that it is important to specify and test the external
behaviour of machines before attempting to fit them into a system or implement their
internals. A variety of methods for doing so were covered, including narrative text, timing
charts, state machines and pseudo-code. The idea of test harnesses was central to the
course (as illustrated by the test harness in Figures 3 and 4).

The initial introduction to the ideas relied on library modules. Students used standard
modules like InOut to interact with the console, made modifications to increase the func
tionality of modules specifically written for the course, like the counter module of Figures
2 to 4, and in general built programs from canned or slightly modified modules. Only later
were they asked to design and implement their own modules.

A Software-CAD laboratory would have greatly speeded up the learning process and
would, I think, have made it possible to give the course as a first programming course
(although the latter supposition remains to be tested). Needed for this purpose would be
a textbook treating the language from the viewpoint of the course. Also needed, because a
crucial part of the learning process in such a course is the criticism and discussion of trial
designs, is a group of teaching assistants trained in the approach.

3.2 Ada-Related Experience

My iconic notation and Software-CAD approach for concurrent Ada programs is described
and illustrated in a textbook and several papers [1,2,3,6]. The approach has been success
fully taught in a number of senior undergraduate and graduate courses in the Department
of Systems and Computer Engineering at Carleton University (e.g., [4]).

Recently [4] I demonstrated to my satisfaction that a relatively small "real time subset"
of Ada which included only the basics of packages and tasks could be quickly learned and
used in a real time programming course by a group of senior and graduate computer
engineering students who had never seen Ada before. One of the keys to success was

51

www.manaraa.com

the use of a graphical design notation [6] to talk about concepts in class and for program
design purposes. The proof of the pudding was the the students became enthusiastic about
both Ada and the graphical design approach. Although this experience was with a class
of relatively advanced computer engineering students, it convinced me that it would be
possible to teach a "black box subset" of Ada in first year and a "concurrent black box
subset" in the second year of an undergraduate university program, based on a graphical
notation and a supporting Software-CAD teaching laboratory.

4 Feasibility Of The Software-CAD Approach For U ni
versity Training

While the idea of the CAD approach to software is hardly new, the ability to support it for
teaching purposes in a university setting at a tolerable cost is new. Relatively inexpensive
personal computers are available with adequate graphical support for Software-CAD.

Environments to support a CAD/CAM approach to programming are emerging in the
laboratory for relatively expensive CAD workstations [1,2,3] and similar systems should
soon be appearing for less expensive personal computers. Therefore it should be possible
soon to assemble a suitable teaching laboratory for the Software-CAD approach using
essentially the same personal computers as are already becoming ubiquitous in university
environments.

Furthermore, appropriate BBC languages are available for these same personal com
puters.

5 Choice Of A BBC (Black-Box-Concurrent) Lan
guage

The BBC language should be available for the entire range of teaching computers in a
program, from microcomputers to mainframes and should be a supported product. This,
taken together with the requirements for a BBC language stated earlier, severly limits
freedom of choice. Modula2 is a candidate. With recent announcements of full Ada
compilers for a popular personal computer, Ada has become a candidate.

5.1 Modula-2 -

Modula-2 is a candidate - it has "modules" for black-boxes - but its main disadvantage
is that it lacks features in the language itself for expressing concurrency in a sufficiently
general manner. One must go outside the bare language to consider general multitasking
or distributed computing. However, it is possible to write a module in the language to
implement a suitable multitasking model, say Ada's, which could be used by students.

52

www.manaraa.com

Recent experience with Modula2, recounted earlier, leads me to conclude that it is an
excellent language for teaching this material. It is small enough not to be daunting to
students and yet complete enough to be useful. Perhaps an Ada subset is not needed for
teaching Ada concepts; Modula2 could serve the purpose nicely.

5.2 Ada -

Ada has the right stuff - "packages" for black-boxes and "tasks" for concurrency - but
its size makes it daunting for a beginner. Its viability as a teaching language in univer
sities at the introductory level remains unproven and may depend on the availability of
subset compilers, subset development systems and subset textbooks specifically for this
purpose. However, subset compilers for the language have been specifically discouraged by
its sponsor. Universities remain wary; Ada has not yet been widely accepted as a teaching
language in the academic community.

An advantage of Ada is that its concurrency mechanisms provide natural models for
distributed computing, thereby avoiding the need to explain how a more limited model
like Modula-2's might be extended.

Enthusiasts of Modula-2 may also be surprised at how well Ada fares in comparisons
with Modula-2 [7].

Ada has also been shown to be a feasible language for hardware design [5], so it clearly
does provide an appropriate framework for total systems thinking.

5.3 Other Languages -

Other languages which might be desirable but which have the disadvantage of being less
widely accepted or supported are NIL [8], Concurrent Pascal [9], and Concurrent Eu
clid [10]. No doubt readers will have their favorite candidates.

6 Towards The Goal Of Acquiring A Total Systems
Viewpoint

Approaches to teaching software architecture like that described earlier can help students
to acquire a total systems viewpoint in at least two respects: familiarity with architectural
issues and familiarity with concurrency.

Architectural issues in software are similar to those arising in hardware. In hardware,
physical packaging may not necessarily correspond to functional packaging, thus violating
logical modularity. In software, the possibility also exists of packaging violating logical
modularity. The issues are similar, although the reasons for adopting particular solutions
will be different.

53

www.manaraa.com

Concurrency issues are similar - races, critical races, deadlocks, and starvation are
examples of concurrency issues which arise in both hardware and software.

However, software architecture is not the only component of a total systems viewpoint.
Personal experience with many students at Carleton has convinced me that the most

effective way for students to acquire the early insight into hardware/software issues so
essential for the total systems viewpoint is for them to do low-level interface programming,
including experimenting with interrupts, device status registers, i/o ports, and so forth.

There is often difficulty squeezing an early laboratory course for such a purpose into
already overcrowded programs. However first year, or the first term of second year, is the
best place for it pedagogically, nicely complementing an introductory, software architecture
oriented, programming course.

Is this too early to introduce such complex material? I do not think so; not only should
the students be well motivated by the general technological climate and their own choice
of program, but also they do not have to learn everything in this course, or even learn it
in a particularly organized fashion. The same material can be tackled again later from a
higher level viewpoint.

The existence of a laboratory course in this area is more important than the software
language used to do the programming. It might be desirable to do the programming in a
BBC language, particularly as a prelude to the idea that such languages are probably the
"assembly languages" of the future. However, some actual assembly language experience
is desirable in its own right, to give insight into the hardware/software interface and to
pave the way for study of compilers.

7 Some Suggested Courses

Here are some suggested courses which might be used to implement this approach in an
undergraduate computer engineering program. This list is not intended to be complete
nor are the descriptions intended to be comprehensive. For example, it does not include
traditional courses like data structures, which would be largely unaffected by Software
CAD approach. Nor does it include detailed descriptions of the more advanced courses.
However, these sketchy outlines of courses convey the flavour.

Where appropriate, comments on experience with a course are given in brackets fol
lowing the course description.

Programming 1 (First Year)

Programming from a black box viewpoint in a BBC language, focusing on non-concurrent
systems. Black boxes as machines with interfaces, engines and stores. Machines for en
capsulation (modules, packages) and action (procedures). Programs as compositions of
machines, focusing on structure and interaction (examples drawn from console i/o). Data

54

www.manaraa.com

flow as a component of interaction. Reasoning about behaviour: interlocking of interac
tions; constraints for sequentiality; timing charts for understanding sequencing. Machines
for data encapsulation, data manipulation (abstract data types), interaction control (state
machines). Design methodology for modular programs based on machine notions; criteria
of coupling and cohesion. Implementation methodology: specifying interface behaviour
and testing it using test harnesses; starting with partial implementations. Case studies
and assignments include programs to store and search for words, to play board games, and
so forth.

Prerequisite - Nil; Corequisite - Software-CAD Laboratory 1
(This material is distributed through several third and fourth year courses in Carleton's

Computer Engineering program. As described earlier, a prototype version of it has been
tried with encouraging results, without the supporting Software-CAD laboratory, in an
introductory Computer Engineering course at U .C. Santa Cruz. Instead of a single semester
course, it may be desirable to have this as a two-semester course, to make sure the notions
sink in.)

Software-CAD Laboratory 1 (First Year)

A laboratory course paralleling Programming 1 using a graphics workstation with appro
priate software tools to prepare "wiring diagrams" and temporal behaviour descriptions of
software graphically, analyze the designs, generate some code automatically, augment the
generated code manually and compile/run/test the result.

Prerequisite - Nil; Corequisite - Programming 1.
(I expect suitable tools for Ada for personal computers to be available soon. Versions

would have to be developed for Modula2).

Microprocessor Laboratory (First or Early Second Year)

Introduction to the organization and programming of a typical microprocessor system.
Laboratory experience with low-level interface programming, including experimenting with
interrupts, device status registers, i/o ports, and so forth. Intended to give the student
insight into how a combination of hardware and software is formed into a computing
system.

Prerequisite - A high school or makeup course in programming in any language.
(This course is present in many programs, but usually much later than this).

Programming 2 (Second Year)

Thinking about and designing software as collections of concurrently operating black boxes.
Making the mental leap from sequential programming. Assignments include the program
ming of hardware-like components, e.g., shared resource arbiters analagous to bus arbiters.

55

www.manaraa.com

Issues illustrated include deadlock, starvation and critical races. Comparisons to hardware
~re drawn continually. Standard data structures such as arrays, lists, queues and stacks
are introduced as black boxes in a manner that illustrates their place in both software
and hardware. Teaching is done by instructors with enough total systems background to
illuminate the material with this viewpoint.

Includes concurrent programming material traditionally handled in courses on operat
ing systems.

Prerequisite - Programming 1, Software-CAD Laboratory 1 and Microprocessor Labo
ratory; Co-requisite - Software-CAD Laboratory 2.

(The material of this course is distributed through several different courses at Carleton
University, on real time programming and software engineering. The availability of a
Software-CAD laboratory would enable it to be consolidated.)

Software-CAD Laboratory 2 (Second Year)

A laboratory course taken concurrently with Programming 2 and supporting it.
(The laboratory environment is the same as for Software-CAD Laboratory 1, except

that now concurrency must be supported in the tools. Appropriate tools have been devel
oped in research laboratories to support Ada design (e.g., [1,2,3]) and versions are expected
to be available commercially soon for personal computers. Support of Modula2 would re
quire additional work.)

Corequisite - Programming 2

Languages And Systems Laboratory (Second Year)

This course is aimed at broadening the student's knowledge. Hands-on familiarization with
two other very different high level languages (e.g., C and Prolog) and two operating systems
(e.g., Unix and a real time OS). Intended to give students insight into other languages and
operating systems, corresponding to the insight they developed into microprocessor sytems
in the first year Microprocessor Laboratory course. A later course will give more thorough
coverage.

Prerequisite - Programming 2 and Software-CAD Laboratory 2 (not so much for content
as for maturity and to give the Software-CAD approach time to take root before tackling
other approaches).

(This course is untried. I see the need for it arising from the early focusing on the
Software-CAD approach for both architecture and concurrency. By this time the students
should have a solid enough grounding in these areas to be ready to broaden their perspec
tives. This course, together with other proposed courses, eliminate the need for a separate
operating systems course.)

56

www.manaraa.com

Real-Time Systems (Third Year)

Deals with advanced level BBC programming on the microprocessor for devices and inter
processor communication. Considers matters like real time resp~nse, deadline scheduling,
tradeoffs between asynchronous and sysnchronous designs, resource management and al
location, reliability, quality, testing, debugging.

Covers many topics traditionally handled in courses on operating systems, but with a
different slant.

Prerequisite - Programming 2, Software-CAD Laboratory 2, Languages and Systems
Laboratory

(Material like this is covered in a third year course in Carleton's Computer Engineering
Program. However, this course can be more ambitious, because more of the principles
have been covered earlier. At Carleton, this is the place where architectural ideas about
programming are first introduced.)

Real-Time Systems Laboratory (Third Year)

The laboratory for Real Time Systems. Uses the same hardware as the first year micro
processor laboratory course.

Corequisite - The Real Time Systems course
(Laboratory work like this supplements real time systems lecture material at Carleton.)

Computing Project (Third Year)

A project resulting in a major report. Placed in third year to give students a head start
in attacking an area of specific future interest and to take some pressure off fourth year.

Prerequisite - third year registration
(This is usually a fourth year course. However, there are advantages to placing it in

third year, as described.)

Languages and Systems (Fourth Year)

A comparative course to cover in a more systematic manner than was possible in the
corresponding second year laboratory course the relation between what has been learned
and a range of programming languages and operating systems. Treats one conventional
programming language (e.g., C), one declarative programming language (e.g., Prolog), one
conventional operating system (e.g., Unix) and one real time operating system. Emphasis
is on constraints imposed by different languages and systems.

Prerequisite - fourth year registration
(This is an untried course.)

57

www.manaraa.com

Computer System Design (Fourth Year)

Deals from an integrated viewpoint with the design of software/hardware systems for real
time applications.

Prerequisites - Real Time Systems - Course and Laboratory
(A course along these lines is an important component of the fourth year of Carleton's

Computer Engineering program.)

Computer Systems Design Laboratory (Fourth Year)

The laboratory for Computer Systems Design
Corequisite - The Computer Systems Design course.
(At Carleton, a laboratory like this complements the design course).

8 Issues

8.1 The Need for More Formal Prerequisites

Some colleagues who have studied these proposals and substantially agree with them have
pointed out what they see as the need for more formal prerequisites in the areas of mathe
matics, logic, boolean algebra and switching circuits. While acknowledging the importance
of these subjects in professional programs, it seems important to observe that (1) they are
not necessary to study software in the way being proposed and (2) there is actually an
advantage to be gained by approaching software composition from an informal viewpoint.
Therefore, while such courses may be required in an overall program, I believe it would
too constraining to insist on them as prerequisites for particular courses.

More prerequisites are unecessary, because the view of programs as compositions of
machines does not need a theoretical basis to be teachable. The teacher can draw on
common sense and intuition about the modularity of everyday objects to get the points
across.

More prerequisites may be undesirable, because there is a need to develop early some
basis for the use of common sense in engineering design and it seems inappropriate to post
pone unecessarily the courses which can do this. Software courses provide an opportunity
to do this, because there is so little constructive theory available for shaping software.

For example, I consider that it would be a mistake to insist on a course in digital
logic as a prerequisite to the introductory microprocessor laboratory. The purpose of
this laboratory is to give early insight and such a prerequisite would push the course too
late in the program. There is no reason why a digital logic course and a microprocessor
programming laboratory course cannot proceed in parallel; one does not need formal digital
logic to write programs to control chips or to understand a microprocessor board, any more

58

www.manaraa.com

than one needs programming to study digital logic. The two can be advantageously studied
in parallel.

8.2 Where Does Traditional Software Material Fit?

I do not mention courses on data structures, compilers, algorithms, operating systems,
software engineering, and so forth.

With respect to data structures, very little change is needed to traditional methods
of teaching them to fit in with this approach, although there is obviously a challenge
to develop a compatible CAD-based approach. My proposed approach provides early
motivation for studying data structures, because data abstraction is an inescapable aspect
of the approach from the beginning; the earliest black boxes studied in the approach
are used to encapsulate data. A traditional course on data structures naturally follows
Porgramming 1, with very litte modification; I have not included a description because I
do not at this time propose anything new in this area.

With respect to compilers and algorithms, much the same is true. Traditional courses
are unaffected by the approach. The only difference is that the students' perspective of
algorthms will be slightly different; they will be perceived as sequential program fragments
to implement the function aspect of the Y-Chart (Figure 1).

With respect to operating systems, I have distributed traditional material over several
courses, thus dispensing with the need for a specific operating systems course.

With respect to software engineering, the design aspect pervades the earlier program
ming courses, providing a solid basis for further study of life cycle issues.

9 Conclusions

I have presented proposals for teaching programming using a Software-CAD approach.
Although the approach has not yet been fully realized in a specific university program,
experience with aspects of it leads me to believe it both feasible and very promising. Much
work remains to be done to make the approach a practical reality: methodologies need
refinement; tools must be developed; supporting textbooks must be written. A purpose of
this paper is to stimulate work in this direction.

Acknowledgments

Thanks are due to many students at Carleton university who contributed to the develop
ment of these ideas by suffering through prototypes of courses which tried them out; to
Pat Mantey at U.C. Santa Cruz, who provided the opportunity to try the ideas out for
the first time in an introductory course; to the small group of students at U .C. Santa Cruz

59

www.manaraa.com

who took the protoype version of Programming 1; and to the reviewers and editor who
helped to focus the arguments of this paper.

References

[1] Buhr, Karam, Hayes, Woodside, "Software CAD: A Revolutionary Approach", IEEE
Trans. Software Engineering, Special Issue on Ada, Spring 87.

[2] Buhr, Woodside, Karam, Van der Loo, Lewis, "Experiments with Prolog Design
Descriptions and Tools in CAEDE, an Iconic Design Environment for Embedded,
Multitasking Systems", Proc. 8th International Conference on Software Engineering,
London, Computer Society Press, Sep. 85.

[3] Buhr, Woodside, Karam, "An Overview and Example of Application of CAEDE: A
New Design Environment for Ada", Proc. International Ada Conference, Paris, "Ada
in Use", Cambridge University Press, May 85.

[4] Buhr, "Lessons from Practical Experience Teaching Hands- On, Real Time, Embedded
System Programming With Ada", Proc. International Ada Conference, Paris, "Ada
in Use", Cambridge University Press, May 85.

[5] Girczyc, Buhr, Knight, "Analysis of Ada as a High Level Hardware Description Lan
guage", IEEE Trans. on CAD of Integrated Circuits and Systems, Vol. CAD-4, No.
2, Apr. 85.

[6] Buhr, "System Design With Ada", textbook, Prentice Hall, 1984.

[7] Feldman, M.B., "Ada vs. Modula-2: A Response From the Ivory Tower", ACM Sig
plan Notices, Vol. 21, No.5, May 86.

[8] Strom, Halim, " A New Programming Methodology for Long-Lived Software Systems",
IBM Jour. Res. Dev., Vol. 28, No.1, Jan. 84.

[9] Brinch Hansen, "The Architecture of Concurrent Programs", Prentice Hall, 1980.

[10] Holt, "Concurrent Euclid, Tunis and Unix", Addison-Wesley, 1984.

60

www.manaraa.com

FIGURE 1
THE SEPARATE ASPECTS OF

SOFTWARE ARCHITECTURE

CD @
Structure Interaction

function

G)

FIGURE 2
MACHINE CHART OF A SIMPLE MnOULE

(INTERF ACE ONLY>

61

www.manaraa.com

FIGURE 3
MACHINE CHART OF A COMPLETE PROGRAM
INCORPORATING THE MODULE OF FIGURE 2

~

~:~/

NODtJL£ NACH/N£

TestHnrness

vo.l

tncr

*cr

dlspl Wr. .cOord

Q;;;t

Count...-

MlIJU.£" N4cH/J,c

NODtJL£
NACH/N£

InOut

62

www.manaraa.com

FIGURE 4

~tJNTD ElL\MPLE wrrB PROGRAM S01JaCELINIS CATEGORIZED BY Y.cJI.UT
<-S*) .1n'RUCJ'URE
(-I*). INTEIACJ10N
<-S*) • FVNCJ10N

*)

~
(*S*)

<-S*)
(*S*)
(*~)
(~*)

~
~
(·S·)

(OS·)

(*S*)

(*S*)
(OS*)

(OS*)
(*J*)
(oJ*)
(oJ*)
(oJ*)

(·S·)

MODULE TIItB...-;
IMPORT IaOut ;

(* m macldne *)

MODULE Caaahr ; (* 11IlenIa1 e mac:lline *)
IMPORT lllOat ;
EXPORT
-lllJpe, (* lJpe *)
.... , YIII, dllpl , Iner , deer ; (* pl'lllledllns *)

TYPE
-1IlJJIe = CARDINAL;

VAR
c:_nt".;
(0 Iac:aIIl8re *)

PROCEDURE ... (1JIItI"_1Il : -l1pe) ; (* actIaa _c:IIIDe *)
BEGIN (* 1IlIt *)
C:=IDItI"CDUIIl;
ENDI ... ;

PROCEDURE ... 0 : -1IlJJIe ; (* actIoII .. aclllae *)
BEGIN (* e *)
REl'VRNc;

END ;

PROCEDURE dllpl ; (* actIoII .. acIIIae *)
BEGIN (* dIIpI *)
IaOuLWrihCud (c,l) ;

ENDdllpl;

PROCEDURE lacr ; (* actIaa IHdtIne *)
BEGIN (* Iller _"lie *)
c:=c+li

ENDlncr ;

PROCEDURE deer; (* adIoII_ddlle *)
BEGIN (* deer *)
IFc >0
THEN c:= eol;

END; (Oil*)
ENDdecr;

BEGIN (. Counter -alne *)
C:=Oi
END Counter ;

CONST
IDltval = 10;

BEGIN (. TeslHa glne 0)
Inll (Inll ...) ;
WHILE ftl 0 > 0 DO
dlspI;
deer;

END ; (0 willie *)
END TeslHarness.

63

www.manaraa.com

Adding Reviews, Prototyping,

and Frequent Deliveries to

Software Engineering Proj ects

Connie U. Smith

Performance Engineering Services Division

L&S Computer Technology, Inc.

P.O. Box 9802 Mail Stop 120

Austin, TX 78766

May 20,1987

Abstract

Charles R. Martin

Department of Computer Science

Duke University

Durham, NC 27705

Program Design and Construction is Duke's introductory software engineer

ing course. Until spring semester of 1985, this has been a fairly conventional

project-oriented course. At that time, we added critical evaluation of other

software systems, more frequent intermediate deliveries, and human-interface

prototyping to the project assignments.

These additions to a previously-successful course produced a positive re

sult far out of proportion to what we expected. This was surprising enough

that we thought it should be reported; the first part of this report describes

the original course and our changes to it.

In addition, we think we have learned something more general about

teaching software engineering principles, and improving software engineering

practices. What we have learned, and ideas and speculations based on this,

make up the second part of the report.

Index Terms: Software engineering education, prototyping, reviews, deIiver

ables, specification, classroom methods.

www.manaraa.com

1 Introduction

CPS155 (Program Design and Construction) is an undergraduate course in

which computer science students are exposed to basic software engineering

principles. This is done in two stages: first, independent programming assign

ments to introduce "programming-in-the-Iarge" and software maintenance

concepts; second, a team project in which a small, useful system is taken

from an informal specification to a working product, including all associated

documentation.

The course has been quite successful: user manuals and other documenta

tion are produced; the group dynamics simulate project management aspects

of larger development teams (which convinces us our simulation is a good

one) ; feedback from students after their first industrial experiences has been

favorable; and feedback from industrial representatives who interview and

hire these students has been positive.

With this success, there were also frustrations: the quality of the docu

mentation was marginal, and we had trouble communicating what was wrong;

the usability of the human interface, and thus of the project software, seemed

to vary widely from group to group; and the presence of egregious bugs in

the final product made us feel our discussions of testing were wasted.

This frustration caused us to try some changes we felt would make the

students more aware of what we expected, and give them useful skills with

which to evaluate their own work. These skills were based on the ideas of pro

totyping, incremental development, and reviews which are widely described

in the software engineering literature. The results suggest these are useful

additions to computer science courses and industrial training; our experience

with these changes also suggest that these methods are important in gen

eral. In order to put these changes in perspective, we will also give a general

description of the course and how we teach it.

65

www.manaraa.com

2 Related Work

Software engineering deals with problems beyond the scope of conventional

computer science. As with all engineering disciplines, software engineers must

make decisions based not just on the mathematical properties of the prob

lem in question. Instead, the software engineer must capture and define

requirements and organize that information into a design. It is then that

real "engineering" takes place - decisions must be made not only on the

theoretical ability to perform the function desired, but also attempting to

optimize among parameters such as cost, efficiency, and maintainability.

Mills[16], Sommerville[17] and Fairley and Martin[S] discuss how project

laboratories are a necessary part of software engineering education, in order

to expose the student to realistic simulations of the project environment. As

will be seen below, our course is similar in outline to those described in [3],

[10], [21], and others.

Particular problems with project-oriented courses lie in the area of grading

and assessing students' projects. This difficulty has been noted by many

authors. One interesting solution to this problem was in the "Software Hut"

method developed by Horning and Wortman [11][12], further experience with

which was reported for example by Woodward and Mander[131. In Software

Hut, the projects are evaluated (at least in part) by their place as products

in a simulated market. Thus the evaluation was competitive.

We did not use so competitive a method of evaluation for several reasons.

First, Wortman and Mander found that in order for the pricing and quality

measures in the Software Huts to reflect the quality of the actual software

delivered, the instructors must "make a[n] ... effort to assess software quality

and penalize students heavily for poor-quality software, " [131 This means

that the instructors must spend a lot of time in this evaluation; this would

not be practical in our larger classes. Second, our project time was quite

limited (about seven weeks), due to the assignments we use to explore the

basic software engineering skills in the beginning of the semester: there is no

66

www.manaraa.com

time to spare for marketing and evaluating the software during the progress of

the course. Finally, we found that - especially after the changes we describe

in this paper - the quality of all the projects was closely enough comparable

that competitive evaluation seemed likely not to be very informative.

However, some grading method is necessary. When working on the class

projects, co-worker's inputs are a major factor in determining each student's

grade; thus the desire to be perceived as doing a good job and working hard

replaces to some extent the salary and performance reviews they will receive

in practice. We feel that our grading method actually improves the simulation

of a project environment for two reasons.

The major differences between our course and other project-oriented

courses lie in the fact that we made reviews of software from outside the

class and prototypes of the student systems part of the projects. While we

also increased the number of deliverables, it is not clear from the literature

that the number of deliverables we require is very much different from other's

courses; differences in the courses and the time available for projects make

them hard to compare in this respect.

We found no references to experiments in which reviews of programs were

used to teach programming practices; however, it has often been suggested

as a good way in which to teach programming, e.g. in Brian Kernighan and

P. J. Plauger's books[14][15].

Boehm et al. performed an experiment to compare prototyping with

specification in projects.[4] His experiment was conducted using a software

engineering project class, and was therefore somewhat similar to our class

after we made the changes described in this report.

In Boehm's experiment, prototyping was defined to be constructing a sam

ple system, then modifying it until it received customer approval, whereas

the specifying approach was the more conventional one of writing a specifi

cation, then constructing the system to meet this specification. They found

the prototyping approach gave a large increase in productivity (and thus a

lower cost), and that the systems produced were more satisfying to the users.

67

www.manaraa.com

However, they also reported that the prototype systems were judged to be

less maintainable.

There are several differences between the method reported by Boehm et al.

and our method. First, Boehm's groups were composed of only two or three

people, rather than the four or five people in our groups. This means that

the group interaction in Boehm's groups would be much less complex, and

the corresponding group dynamics much different - for example, scheduling

group meetings would be much easier.

Second, the people in Boehm's project course were graduate students

with industrial experience. Thus they brought into the course skills that our

students could not have developed. In particular, Boehm's students would

have had some experience with arriving at an understanding of the user's

needs, as well as greater programming skill.

Finally, several of the project standards Boehm's students had to meet

were quite different from ours, especially in documentation. We look on

prototyping not as a replacement for specifying a system, but as a tool for

deriving the system specifications. A large part of Boehm's productivity

increase seems to have been due to the smaller amount of documentation

that the prototyping groups needed to produce, so we would not expect to

see a corresponding increase in productivity in groups working within our

prototyping paradigm. Together, these differences cause us to believe that

the working environment overall must have been quite different in Boehm's

experiment and in our classes.

We chose to add prototyping to Program Design and Construction because

of our general agreement with the method of prototyping and incremental de

velopment, rather than responding to the Boehm paper in particular. The

fact that the addition of prototypes in two courses that differ in many re

spects has been successful leads us to believe the technique is more generally

applicable.

68

www.manaraa.com

3 Overview of Program Design and Constructionl

CPSl55 (Program Design and Construction) is an elective course for juniors

and seniors majoring in Computer Science. In their introductory courses,

we expect the students to have developed basic programming skills, to have

been exposed to programming using the usual data structures such as queues,

linked lists, stacks and trees, and to have been exposed to some of the issues

of the underlying computer architecture. In addition, they normally have

had several math courses, and will have completed at least one course in

composition. The composition course is quite important, as the students will

spend a large part of their time and effort writing documentation.

The primary purpose of Program Design and Construction is to supple

ment the teaching of programming with exposure to the problems of system

design and implementation, and to fundamental concepts of programming

in-the-Iarge. We have concluded, as have others, that the best way to do

this is by a project-oriented course. Since the students have been taught pro

gramming, we would ideally begin the project immediately; however, there

are a few fundamental concepts of programming-in-the-Iarge in which we feel

the preparation afforded by other courses is insufficient. Therefore, we have

added the topics shown in Table 1.

In order to stress the importance of planning and scheduling tasks, we

encourage them to start the assignments early, and late assignments are not

accepted. We encourage an "incremental build" approach similar to that

advocated by Brooks and Basili.[5] [2] Students are to create a working version

of a subset of the assignment, then add subsets one at a time. Students receive

a much better grade of they submit a program that works successfully on a

subset of the assignment than if they have coded everything but nothing runs.

IThis describes our version of CPS155 - other instructors at Duke have used other

approaches and pursued other goals.
2Studies have shown that breadth of experience in programming languages is a key to

productivity and proficiency in programming[7].

69

www.manaraa.com

Algorithms for Pro- Large problems. and algorithms suitable for processing millions

gramming-in-the-Large of data records. These are not solvable using the in-core algo

rithms that are commonly taught to undergraduates.

File Structures The undergraduate data structures courses usually cover in-core

data structures where device access time is not an issue. We

cover sequential. indexed-sequential. and random-access files.

as these seem appropriate for a basic understanding of the prob

lems of dealing with very large data stores. (A data-base course

covers additional concepts.)

Program

Documentation

Programming

Languages and

Systems

Peripheral Problems

Program documentation is stressed in other undergraduate

courses: but class assignments are still "write-only" programs

that are written. submitted for a grade. then discarded. Since

the value of documentation is in program maintenance. we re

inforce this by asking students to modify an existing program

from a previous year.

Most courses at Duke are taught in Pascal using microcom

puters. We use PL/I under MVS. as this is closer to most

production environments. 2

Assignments in other courses leave students with the impres

sion that selecting the algorithms and data structures are the

only problems to be solved. Our assignments expose them to

new operating systems. and large environment problems that

affect project management.

Table 1: Topics Added to CPS155

70

www.manaraa.com

In addition to the programming-in-the-Iarge concepts in Table 1, the soft

ware engineering concepts that we emphasize are:

• the necessity of good specification and design to successful large system

projects.

• the importance of creating good user manuals early in the design stage.

• basics of human interface design.

• good organization of designs and documentation.

• scheduling and manpower allocation.

• system integration and test techniques.

We use a preliminary sequence of about six assignments to reinforce these

topics. At about mid-term we assign the term project. Term projects have

the following characteristics:

• The minimal version of the project is something that a three or four

person group can readily complete in six to eight weeks.

• The scope of the complete project as the students originally see it is

more than we expect can be implemented. This forces the students

to make some engineering decisions on the scope and ambition of the

project.

• The project is not one that has been recently used, so no previous

solutions are easily available to the students.

• The human interface is a major part of the system, and it has some parts

in which well-chosen algorithms can give large performance advantages.

• The project has a loose enough set of requirements that there are am

biguities and room for interpretation. (Needless to say, we have had

little trouble finding projects with this characteristic.)

71

www.manaraa.com

Some examples of projects we have chosen are: a comprehensive small

business management system; an "office manager" system for small consult

ing firms; an income tax-advisor system; a kitchen inventory system with

menu-planning functions; and an appointment and time accounting system

for Duke's internal microcomputer repair facility. (The alert observer might

guess that one of our ways of devising a project is to look for something we'd

like to have ourselves.)

Once we have determined the course project, we must then arrange the

teams that will work together for the duration of the course. Others have

allowed the teams to be chosen by the students themselves, or allocate people

to teams arbitrarily. We feel this complicates the problem of grading the

projects unnecessarily, in that we must then find a way to normalize the

effects of variation in talents or skills as distributed among the groups. We

are also interested in the groups' dynamics being similar, for reasons which

are discussed below.

We feel team selection is very important to the success of the course, so

we instead assign people to project teams. We do so by using the scores on

the preceding assignments to allocate the students evenly among the project

teams. We try to allocate only one "star" and only one student from the

other end of the curve to each group. We then assign remaining people to

the groups working by cumulative numerical score. The result is usually that

each group's cumulative score is about equal.

All teams compete on the same project.s It is presented to them in a

single class session by someone who has volunteered to act as the customer

for the project. Usually, we also give the students the informal specification

at that time. This informal specification takes the form of a "wish list" which

SOnce we tried assigning a special project to a group of experienced students to provide

them with a more challenging problem. The results were disastrous: they ignored delivery

deadlines; they did not have the same group dynamics, so their project-management experi

ence suffered; and they failed to complete the assignment. The illusion of "special treatment"

was still resented by the other students, who felt like theirs was not a "real project" - just

a toy. We strongly discourage special projects.

72

www.manaraa.com

contains everything the user would ever possibly want in such a system. (One

example of a project wish list is given as an appendix.)

It is the students responsibility to organize the teams once we have as

signed the people. We recommend the producer-director organization in

Brooks[5]. We require them to choose a team leader for each team who

is responsible for the team's schedule and progress, and acts as the main

interface to the instructor and the customer.

Our grading methods for the initial assignments result in grades that

usually have a roughly Gaussian distribution. Those at the high end are

talented, highly motivated students, while those at the low end generally are

capable but do not invest as much effort in the course as others. (Those who

are simply incapable usually drop the course before the project begins.)

When we assign students to the teams, we assign one "star" to each

group, and one student from the other end of the curve, with the others from

somewhere in the middle. This introduces a project management challenge:

the team manager must effectively schedule team efforts, delegate some parts

of the effort, monitor the team's progress, and motivate the under-achiever

in a (relatively) diverse group.

As we originally organized the course, we required four deliveries: a pre

liminary project plan, a user's interface specification, user's interface screen

layouts, and a final delivery. Beginning with Spring Semester 1985, we re

quired five deliveries: a review of another CPS155 project system, a pre

liminary project plan, a user's interface specification, an executable user's

interface prototype, and the final delivery. The details of these deliveries,

both before and after the change, are included in Table 2.

Each delivery is graded, and grades are returned to the students as soon

as feasible (ideally at the next class meeting.) At the end of the term we

collect the projects, which are then graded for inclusion in the final grade for

the course. At this time, we attempt to correct for the effects of individual

effort in translating from the team grades for the project to the individual

grades used in calculating the students' final grades.

73

www.manaraa.com

Old Assignments New Assignments

Deliverable Description Deliverable Description

Project Written report.

Review

Preliminary Proposed schedule and Preliminary Same as old assignment.

Project preliminary requirements. Project

Plan Plan

User Inter- User's manual: functions, User's Same as the old assign-

face Speci- screen descriptions, and Manual ment, except screen lay-

fication operations invoked by each outs not included.

action.

Screen Drawings of all screen lay- Screen Same as old assignments.

Layouts outs. Layouts

User's In- All screens as described:

terface data entry and changing

Prototype displays. No calculations

or other output required.

Final Final (as delivered) re- Final Same deliverables as previ-

. Delivery quirements description: Fi- Delivery ously.

nal User's Manual: Pro-

grammer's Reference Man-

ual: Code listings: Test

data and test plans: Exam-

ple scenario: Tutorial: Exe-

cutable system.

Table 2: A Comparison of Old and New Assignments in CPS155,

74

www.manaraa.com

We have found a useful way of handling this problem which we adapted

from Dr. Frederick P. Brooks, Jr. at the University of North Carolina: each

student turns in a personal evaluation of the effort and contribution of other

members of his or her team. In this evaluation they allocate points to each

member of the team (including themselves), according to their perception of

the level of effort and effectiveness of that person. We set the total points

that may be allocated to be 10m where m is the number of team members,

but then allow these points to be allocated in any way that results in this

total - so for example, a four member team has a total of forty points that

may be allocated, but the allocation may be 20,10,5,5.

Our experience with this method has been that it is quite effective -

the allocations within a team almost always agree within a few points, and

they usually correspond to our own subjective evaluation of performance:'

Surprisingly, this is even true of students who receive dramatically low evalu

ations - although their own evaluations of themselves are often a few points

above the others.

This method has a particular advantage for us. We feel it necessary to

grade in part on a student's participation; however, in most classes this kind of

grading requires a subjective judgement on the part of the instructors. While

we feel these judgements are qualitatively correct, the evaluations turned in

by the students give us a quantitative evaluation that is not based only in

our own perceptions.

The individual grades are combined with the group project grades for

the final assessment. This approach is used by Brooks to normalize group

and individual efforts: a hard-working individual on a mediocre teams gets

some compensation for extra effort; a mediocre effort on a successful team is

appropriately downgraded.

'Occasionally, students point out subtle differences in performance that we would not

have noticed.

75

www.manaraa.com

4 Additions Made to the Course

As we mentioned above, although the course as a whole was successful, we

still felt some aspects of th,e course were not as effective as they might have

been. In particular, we felt that the quality of the documentation was simply

not sufficient, and the design and implementation of the human interfaces

needed improvement.

We observed that the documentation provided by the teams had three

major problems. First, the documentation was vague and imprecise. Second,

the documentation (and the design being described) was inconsistent: it often

gave the impression that each section was a separate document, and the

complete manual simply a collation of these documents. Third, there was

almost never sufficient overview information about the systems, resulting in

a manual which one must completely absorb in order to understand any

section.

We originally made samples available for all of the types of manuals we

would require. We found that this alone had no effect; just reading the

manuals was not sufficient to make any change in the quality of the results

obtained.

We also found that the user interfaces developed by the students were not

well designed. In particular: user interfaces were often designed to be easy

to code rather than easy to use; the user interfaces often were not consistent

across all functions; and the dialogue with the user often required too many

responses.

We decided to make some changes in the course starting in hopes of

improving the students' performance in these areas.

4.1 Adding Prototypes

Another problem that we had observed was that the human interface was

simply not very good. We had emphasized human factors in class, but this

was apparently not enough. Our hypothesis was that the students were not

76

www.manaraa.com

skilled enough to recognize those times when their human interface designs

were not going to be sufficient.

In addition to the reviews, we made the construction of a human-interface

prototype an early deliverable in the project plan. We made it clear that

this need not be deliverable code, and need not meet coding or performance

constraints - it simply must simulate the barest skeleton of the human

interaction with the system.

4.2 Adding Intermediate Deliverables

To allow us to better track and understand the process the students were

going through, we added deliver abies to the projects so there was a delivery

of some sort to be made about every two weeks. This would have two effects:

we could examine the changes in the systems and the associated designs,

which would give us feedback about what changes occurred because of each

of the other changes we were making; and deadlines would become part of day

to day life by making sure that there was a deliverable within the two-to-three

week "horizon" that has been widely reported.

4.3 Adding Reviews of Other Projects

Our basic hypothesis about the documentation was that the quality of the

students' project documentation was poor because they had no examples from

which to learn. We found it hard to find good examples for the students,

because first, much system documentation is tied to systems so large they

are simply infeasible for short-term examination; and second, there wasn't

much we wanted to expose an impressionable young programmer to anyway.

We decided to try something suggested by Robert Persig's Zen and the

Art 0/ Motorcycle Maintenance[19], in which Persig describes an attempt

to teach Quality to composition students by having them compare different

examples of writing. We adapted this by having the students review a project

from an earlier semester; this was one of the last assignments before the term

77

www.manaraa.com

project. The guess was that seeing an example of another project would have

two effects (at least): they would see the areas in which the quality of the

result was not high enough, hopefully learning from the mistakes of others;

they would realize that the results of their project would have a life beyond

the end of the term - would their project be an example next term?

This review was not simply to read the manuals; the actual software

produced by previous teams was made available to the students for testing

by putting the software on reserve in the library. This software was then to

be executed and evaluated by the students.

The review assignment is included in the appendix. Note that the docu

mentation lesson is disguised; the assignment is to evaluate the user interfaces

of several different projects. By using the software, the students experience

several different approaches to the same problem. There is always room for

improvement in user interfaces - as is discussed in greater detail in [20J - so

the students get experience with features that are effective, and others that

are awkward.

5 Results

Our results were invariably good - surprisingly so. In fact, we feel that

the worst of the projects since we have made this change are of the quality

we associated with the best projects before the change. We observed similar

effects in two different semesters and are confident that they represent a

positive, fundamental effect which was not due to unusual talent in one class.

We feel this improvement was concentrated in certain areas. First, the

quality of the documentation and of the human interface was considerably

better. Second, the distribution of student hours over the life of the project

was better; there were fewer dark circles under the student's eyes at the end

of the semester, even though our suspicion is that the time spent on projects

are nearly the same as before (we collected no data on total hours to support

this). Third, the groups seemed to be more successful at selecting a set

78

www.manaraa.com

of functions to be implemented in the available time. Finally, the project

management seemed much improved - the project managers were better

able to control the projects.

In the next section, we describe these results, considering them both from

our own perspective and from our understanding of the student's perception

of the result.

5.1 Added Deliverables

Adding deliverables to the projects is one area in which we are not easily

able to determine the effect. In retrospect - had we intended this as a

formal experiment rather than simply trying to improve an existing class -

we might have attempted adding more deliver abies to the projects without

making any of the other changes.

However, we feel we can draw some tentative conclusions from the results

we have already had: suppose the good effects we saw are attributable only to

the more frequent deliveries. Then we would have expected that all deliveries

and all products would have improved, since they were all affected by this

change. As reported in the next sections, the improvements we saw seemed to

be preferentially in the human interface and documentation sections, which

would then not support this hypothesis.

We did, however, observe that the project management improved. In

previous years, frantic project managers appeared the week before the final

delivery date complaining about under-achievers. Unfortunately, then it is

too late to correct the problem. After we made these changes, the same

phenomenon occurred - but very much earlier! (Usually in the week before

the prototype was to be delivered.) It was then still possible for the project

managers to learn the necessary leadership skills for them to motivate the

under-achievers.

Another (less dramatic) improvement attributable to the effects of more

frequent deliveries was that the teams seemed more likely to propose systems

79

www.manaraa.com

which were achievable subsets of the wish-list. This could be attributed to

either the increased horizon effect - the deadlines were always close enough

to be worrisome - or it could be attributed to improved organization.

Our students' perception was that (with the exception of the prototype)

the many deliveries were simply a lot of trouble - they were not helpful.

We can sympathize, because the many deliveries were a lot trouble for ev

eryone. Further investigation would be worthwhile in order to determine the

particular effect of frequent deliveries.

5.2 Reviews

As we noted above, we felt that the quality of the documentation was one

of the areas which improved most after the change. In particular, the user's

manuals included an effective system overview section, and the manuals were

better integrated. We believe this is due to the students' experiences with

poor overview and documentation in the systems they reviewed. Also, the

need for a system overview was subtly reinforced by the assignment question

asking for the purpose of the software. In their reviews, the students were

forced to derive the overall purpose by experimenting with commands - a

frustrating experience. System manuals after the change invariably contained

a concise statement of the system's purpose.

We offered two possible ways in which reviews would lead to better sys

tems and documentation; learning from other's mistakes, and the worry that

their projects might be a (bad) example next term.6 We believe the improve

ment we saw was due almost entirely to the students having learned from

the previous systems' painful properties. This supposition is supported by

interviews with the students after the class was over.

6Names were deleted from the projects used for review, to protect the privacy of the stu

dents who implemented the projects. However, the students were aware that these examples

were from earlier semesters. We feel this at least leads to the recognition that their projects

would have a life beyond the end of the semester.

80

www.manaraa.com

5.3 Prototyping

The other area of dramatic improvement was in the human interface, and we

believe this improvement to be due almost exclusively to the human-interface

prototype.

This conclusion is arguable - one could just as easily say that the reviews

had as good an effect in the human interface as in the documentation. There

were a few ideas the students obviously learned from the exerciseS; However,

we (accidentally) had a chance to eliminate this effect in the most recent

semester. This system had a secondary communication section that was

not required in the prototype; upon completion, the quality of the human

interface of this section was dramatically lower than other parts of the system.

This supports prototyping as the main reason for the improvement.

5.4 Overall

We noticed several other improvements in the overall projects. The con

ceptual integrity of both the software and the documentation was greatly

improved. That is, all facets of the system appeared to be a "unified whole"

rather than unrelated pieces that were combined at the last minute. The

user interfaces had consistent rules of discourse throughout. This we at

tribute primarily to the prototype, but we believe the different systems used

for the reviews reinforced this idea. We believe team members cooperated on

the development of the user interface prototype, integrated the pieces early,

and then modified them to improve consistency. In previous years integration

was done too late to allow these improvements.

We mentioned in section 5.1 that the students were better able to judge

the project scope. On many projects though, the students actually imple

mented more than they originally thought possible. It appeared this was

6For example, one early project required a carriage return following each field when

entering a date, i.e. mm{cr)dd{cr)yy{cr). All students recognized that the carriage returns

should be eliminated.

81

www.manaraa.com

partly due to better project control. The students attributed it to having

the user interface prototype working early; it served as scaffolding and made

testing much easier.

It is interesting to note that since we have made these changes, we find

we must use pre-change projects for class evaluation. The deficiencies in the

documentation and user interfaces are no longer as obvious as before.

5.5 Analysis of Results

One of our colleagues suggested that perhaps we were giving post-change

students more attention and direction than their predecessors. We had an

(accidental) opportunity to evaluate this effect. In the most recent class

project, the customer for the project volunteered to meet with the teams

regularly to provide direction. Two of the four teams met with him weekly;

the other two teams never met with him (other than during two in-class

sessions that all students attended.) IT these effects were the result of receiv

ing more attention and direction, one would expect better results from the

two teams that met regularly with their customer; however, there were only

minor differences in the results. The documentation was not affected. The

user interfaces of the two "supervised" groups had a few minor features to

make data entry easier, but the other groups had as many other features that

improved usability (that the customer had not thought of.) The customer

liked the other features and said "all projects were good, and he wished that

he could combine some features from each of them rather than selecting just

one." During the last week of the semester, we were surprised to discover

that there had been differences in supervision; we had not noticed a difference

in earlier deliverables, nor could the grader identify from the products which

of the groups had closer supervision.

As we mentioned earlier, Boehm reported several positive effects of pro

totyping in software engineering courses[4]. Our method of prototyping in

this class is rather different from his method. In Boehm's experiments, the

82

www.manaraa.com

prototype is used in lieu of a specification for the systems - no prose speci

fication is written or delivered. In our classes, the prototype was part of the

specification process; written specifications of the system were still required.

Boehm's paper concluded that the systems developed from a prototype

took fewer staff-hours and provided better function to the user, but (on in

spection) seemed not as maintainable. The systems constructed by our stu

dents seemed to us to be at least as maintainable as the systems built before

prototyping.

Building and experimenting with a prototype is a process of developing

an exact understanding of what the system is to do. This is the important

part of specifying a system in any case, and in those functions which are

difficult to describe formally - as are human interfaces - a prototype may

be the most effective way in which to do so.

But once this understanding is achieved, it is still necessary to organize

this information. Prototyping with an intervening requirements-description

and design step allows this information to be drawn together and organized.

Systems developed without this intervening step are likely to have an ad

hoc organization with little conceptual integrity - and this leads to systems

which are hard to understand and therefore hard to maintain.

6 Discussion and Conclusions

The paper describes a limited experience with the addition of prototyping and

reviews of similar projects, along with more deliverables, in an introductory

software engineering course. This experience was not a properly controlled

experiment, but the effects we observed are so dramatic that we feel they

indicate that the addition of prototyping and reviews can have very good

effects.

Boehm's experiment replaced a written specification with prototyping,

while our experiment added prototyping as part of the process by which spec

ifications are derived. We conclude that combining prototyping with speci-

83

www.manaraa.com

fying results in better specifications with greater conceptual integrity. Our

approach advocates first writing specifications for the system architecture in

the form of a preliminary user manual, then implementing the prototype,

and finally revising both the software and the user manual to incorporate

improvements. Developers do not spend too much time specifying since the

prototype deadline is imminent, but they do have a unified plan before start

ing the prototype.

Since much of the prototype code is in the final product, we could also

consider these steps as increments in an incremental build approach. On the

other hand, we specifically instructed the students to consider the prototype

code as disposable, to be used in their final product only if it fit their other

goals of maintainability and clarity. Our experience yields additional support

for the usefulness of this approach to prototyping.

We conclude that adding reviews of other's documentation in a context

in which realistic evaluation is encouraged - that is, in a situation where

the people involved have no particular relationship with the other project

- improves the quality of the documentation those students write. Our

conclusion is that this is due to the students having an example of "what not

to do." We conclude that these examples are at least as effective as examples

of what they should do; these examples are also easier to find.

We conclude that adding more frequent deliverables and human interface

prototypes has a good effect on student projects in general. In particular,

we feel the dramatic improvement in human interfaces was the result of the

addition of prototypes; prototypes were the only addition to the project as

signment that followed the preliminary specification. As we noted above,

we had a chance to observe a subsection of a human interface that was not

included in a prototype even after we added prototyping to the general as

signment, and observed that this subsection was consistently of lower quality.

Thus we feel that prototyping and adaptive design are very helpful (especially

for novices) when designing human interfaces.

We do not feel that these conclusions apply to introductory software en-

84

www.manaraa.com

gineering courses alone.

The method we have used in Program Design and Construction can easily

be adapted to industrial training. A training program that began with re

views of already-finished projects would have two good effects: first, it would

help assimilate the students into the corporate culture; second - and per

haps more important - it provides experience in software engineering in a

sheltered "hot-house" environment. Our class experiences strongly suggest

that reviewing systems provides the students with many of the benefits of

experience by exposing them to the successes and failures of others.

Designing and prototyping human interfaces for complex systems would

be an especially useful addition to such a training program. Human interfaces

are among the hardest parts of a system to design, and as we have noted,

are one of the areas of design which most benefits from experience. We have

seen that this kind of experience comes at great cost on the job: the delay

between design and realization of a human interface in a system may be years.

By adding prototyping in projects of reasonable size, the students have the

opportunity to develop and experiment with a number of designs (their own,

and those of systems chosen for review) in a short time.

The course we describe has certain limitations, most being the result of

the limited time available in the semester. In a two-semester course we could

include certain things which are simply not possible in the time we have: an

assignment in maintenance that requires changing an existing student sys

tem; project presentations, which we gave up when we made the changes

described here; and a deeper exploration of testing and of various different

methodologies. We would also like to give some time to the concepts and

use of separate compilation, which is not easy to do with our current under

graduate programming environment. But we are happy on the whole with

the course as it now stands; we feel that after completing Program Design

and Construction our students have developed useful skills that will ease the

transition into the industrial world.

85

www.manaraa.com

References

[1] Anderson, D. E. "Software Engineering: an Art Searching for Scientific

Recognition?" Software Engineering Education, Anthony I. Wasserman

and Peter Freeman, eds., Springer-Verlag, New York NY, 1976.

[2] Basili, V. and A. J. Turner, "Iterative Enhancement: A Practical Tech

nique for Software Development," IEEE Transactions on Software En

gineering, Vol. 1, no. 4, pp. 390-396, December 1975.

[3] Bickerstaff, Douglas D., Jr. "The Evolution of a Project-Oriented

Course in Software Development" , SIGCSE Vol 17 No.1 1985.

[4] Boehm, Barry W., Terence E. Gray, and Thomas Seewaldt. "Prototyp

ing vs. Specifying: a Multi-Project Experiment", IEEE Transactions

on Software Engineering, Vol. SE-1O, no. 3, pp. 290-302.

[5] Brooks, Frederick P., Jr. The Mythical Man-Month, Addison-Wesley

Publishing Inc., Reading, MA, 1975.

[6] Busenberg, Stavros N., and Wing C. Tam. "An Academic Program

Providing Realistic Training in Software Engineering", CACM Vol. 22

No.6, pp. 341-345, June 1979.

[7] Curtis, Bill. "Fifteen Years of Psychology in Software Engineering:

Individual Differences and Cognitive Science," Proceedings of the 7th

International Conference on Software Engineering, pp. 97-106, IEEE

Computer Society, New York NY 1984.

[8] Fairley, Richard E., Nancy Martin, "Software Engineering Programs

at Wang Institute," Proceedings of the ACM National Conference, pp.

240-250, ACM New York, 1983.

[9] Freedman, Daniel P., Gerald M. Weinberg. Handbook of Walkthroughs,

Inspections, and Technical Reviews Third Edition, Little Brown and

Company (Inc.), 1982.

86

www.manaraa.com

[10] Henry, Sallie. A Project-Oriented Course in Software Engineering

SIGCSE Bulletin Vol 15 No. 1 February 1983.

[11] Horning, James J. "The Software Project as a Serious Game," Soft

ware Engineering Education, Anthony I. Wasserman and Peter Free

man, eds., Springer-Verlag, New York NY, 1976.

[12] Horning, James J., D. B. Wortman. "Software Hut: A Computer Pro

gram Engineering Project in the Form of a Game," IEEE Transaction

on Software Engineering, Vol. SE-3, no. 4, July 1977.

[13] Woodward, Martin R., Keith C. Mander. "On Software Engineering

Education: Experiences with the Software Hut Game" , IEEE Transac

tions on Education, Vol. E-25, no. 1, pp. 10-14, February 1982.

[14] Kernighan, Brian, P.J. Plauger. The Elements of Programming Style,

Second Edition, McGraw-Hill Book Company, New York 1978.

[IS] Kernighan, Brian, P.J. Plauger. Software Tools, Addison-Wesley Pub

lishing Co., Reading MA, 1976.

[16] Mills, Harlan D. "Software Engineering Education", Proceedings of the

IEEE, Vol. 68, No.9, pp. 1158-1162, September 1980.

[17] Sommerville, Ian. "Software Engineering - an Educational Challenge" ,

Information Processing 89, R.E.A. Mason (ed.), Elsevier Science Pub

lishers B.V. (North-Holland) pp. 193-197, 1983.

[18] Page-Jones, Meilir. The Practical Guide to Structured Systems Design,

Yourdon Press, New York NY, 1980.

[19] Persig, Robert. Zen and the Art of Motorcycle Maintenance, pp. 198-

203, Corgi Press, London, 1979.

[20] Smith, Connie U. "Experience with Tools for Software Performance En

gineering," Modelling Techniques and Tools for Performance Analysis

85, pp. 29-40, Elsevier Science Publishers, New York 1986.

87

www.manaraa.com

[21] Woodfield, Scott N., James S. Collofello, and Patricia M. Collofello.

Some Insights and Experiences in Teaching Team Project Oourses

SIGCSE Vol. 15, No.1, February 1983.

[22] Wood-Harper, A. T., D. J. Flynn. "Action Learning for Teaching In

formation Systems", The Oomputer Journal, Vol. 26, No.1, pp. 79-82,

1983.

88

www.manaraa.com

A Project Assignment

This is the text of one project-review assignment we have given.

A.1 Assignment

There are two system packages on reserve in the Engineering Library. You

have been assigned to evaluate them. For each package, you should do the

following:

1. Get the documentation and the diskettes.

2. Familiarize yourself with the system functions, and procedures for using

the system.

3. Locate a PC and test each package.

4. Prepare a report containing the following information:

• A brief summary of each package's capabilities.

• At least five good features of each user interface.

• At least five features of each interface that could be improved to

make it more "user friendly."

• At least five things you wish had been in the documentation.

There are a few ground rules:

This is to be a two-person team project.

There are a limited number of copies of each package. Try to maximize

sharing. DO NOT put off the usage part of the evaluation until the last

minute. Also, be careful with the packages' software - it is possible to

clobber the floppies if you are not. This will slow both you and others down.

89

www.manaraa.com

B An Example CPS155 "Wish List"

For this term project, one of the authors (Martin) acted as the customer for

the class. This is the project wish-list, with only slight editorial changes.

B.1 Introduction

In addition to the work I do at Duke, I do a certain amount of consulting. I

would like to have a way to automate some of the awful things the IRS call

on me to do, and I would also like to take care of some of the home and office

chores that pile up.

Besides the simple bookkeeping, I am not very good at keeping the figures

straight or doing some of the things that need to be done - like balancing

my checkbook. So I would like a system that will take over some of that work

for me.

What I need is a system that I can run every so often to take the infor

mation I have been keeping, file it, and be prepared to figure out the answers

I need.

B.2 Wish List

These are the functions I would like to have:

1. Record bills as they come in.

2. Record the amounts of checks I receive.

3. Record the amounts of checks I write (preferably for both my business

account and my personal account. Also, I might want to add my wife's

checking account into the system at some time. Also the house account

we use for expenses connected to our house, and investment accounts,

like money-market accounts.)

4. Keep track of the regular bills, and tell me what I have to expect to

pay in a month.

90

www.manaraa.com

5. Keep track of my regular income, and use this along with the item

above to tell me if I am going to be broke this month.

6. Keep track of expenses I can allocate to clients, so they can be billed

back to the clients.

7. Let me record hours spent for my various clients or working for the

department, so I can bill for them.

8. Sometimes, someone wants me to do a job, and I can't say for certain

if I have enough time to finish it before its due date. Let me have the

system figure this out for me.

9. Make up bills for my clients.

10. Sometimes I know my client can't pay as much this month as I should

really charge: for a good client, I will sometimes spread my charges

over a number of months. Let me review billings before they are sent,

so I can make this sort of arrangement if needed.

11. I often have to make long-distance phone calls that should be charged to

clients. Let me record these calls and keep track of their costs. (Ideally,

I would like to do this without having to get time-and-charges from

the operator, since that is usually more expensive than a regular DOD

call.)

12. When I work for my consulting clients, I need to keep track of both the

hours worked and what I was doing.

13. Make the user interface as easy to use as possible: otherwise, I probably

will just put oft' doing the work with the system.

14. Remember that I will probably not be using this system every day.

Make the system easy to learn, and suit it to occasional users.

15. We keep a calendar in which we write the following things:

91

www.manaraa.com

• What bills we should get in the month.

• What day to expect these bills.

• What day these bills will be due (which is often but not always

about 30 days after they come in.)

• What day to mail these bills on to make sure they get in on time.

• How much each bill will be.

• When we can expect to get paid.

• Whether or not the amount of money coming in will be enough

to cover the bills we have (remember this depends not just on

the sums, but on the time relationships between the bills and the

paychecks.)

16. Remind me of things I need to do, like send flowers for anniversaries or

turn in a report.

17. At the end of each quarter, I must send the IRS money to cover my tax

witholdings for that quarter. How much should I send, and where do I

send it?

18. Besides the usual monthly bills, there are some bills (water bills) that

come every two months, some that come every quarter, and some that

come every six months. Remember these for me too.

19. My wife gets paid every two weeks, I am paid weekly by Duke and

monthly by my consulting customers. Every three months, we get a

stock dividend.

92

www.manaraa.com

Producing Software Using Tools in a Workstation Environment

Abstract

Mark Sherman
Robert L. Drysdale III

Information Technology Center
Carnegie-Mellon University

Pittsburgh, PA 15213

and

Department of Mathematics and Computer Science
Dartmouth College

Hanover, NH 03755

We discuss how we taught students to build and use translation, interpretive, editing and monitoring tools
in an undergraduate software engineering course. Students used these tools on Iow-cost workstations
(Macintoshes) to build large, group projects. The students' projects used all available features of
workstation environments, including graphics. windows, fonts, mice, networks and sound generators. We
found that 1) the use of tools increased student productivHy, 2) a shift in data structure and algorithm
topics is needed to cover material relevant for workstation environments, 3) new topics in system design
are required for a workstation environment, 4) tradHional material can be easily illustrated wHh a workstation
environment and 5) students enjoyed being able to manipulate the advanced features of workstations in
their work, which in turn increased their motivation for and concentration on the course material.

I. Introduction

Dartmouth College has continually reformulated Hs undergraduate software engineering course to give

students experience wHh designing advanced systems using modern architectures. Our course is

oriented towards the technical aspects of building a large system rather than the managerial aspects, and

as such, tries to incorporate the principles and applications of current technologies and trends.

One recent decision was to emphasize the construction of systems using tools in a workstation-oriented

environment. Our decision was based on two beliefs about the nature of future software systems. First,

www.manaraa.com

construction of large systems will be done by the integration of many pieces, each possibly built in a

different way. Many pieces will not be programmed in the traditional sense but will be developed through

the use of tools, speCified via ·very high level languages· or simply taken off the shelf. Second,

workstations provide a richer and more sophisticated set of facilities than conventional computers. For

example, workstations usually provide substantial graphics facilities (both vector and bit-mapped), network

facilities, sound facilities and pointing devices, e.g., a mouse. Although no single facility is unique to

workstations, for example, networks existed before widespread deployment of workstations and not all

workstations are on a network, the combination of features affects the kinds of decisions that are needed

when building a large system.

We believe that we have succeeded in teaching our students how to build and use tools, how to build

systems out of pieces developed in heterogenous ways, and how to exploit the features of a workstation

environment. The resulting systems are straightforward to build, easy to use and accomplish their

intended functions. Through this article, we wish to share our experience with the novel aspects of our

course.

We start with a general discussion of our course. We use section 3 to describe some workstation features

that students used. In section 4, we elaborate on some of the tool and system building techf"()logiesthat

we used. The next section contains a discussion of the program organizations we taught students. In

section 6, we briefly list the kinds of computer-user interactions that we covered in class. Section 7

discusses how we shifted our traditional presentation of data structures to accomodate workstation

environments. Our experiences with the revised course are given in section 8. We present our

conclusions in section 9.

94

www.manaraa.com

II. General Outline of Course

Our course is officially t~led Programming System Design and Development. We give a series of lectures

on system specifICation and design, project team organization, project construction, and data structure

selection and evaluation. Weekly homework assignments illustrate how the principles discussed that week

in lecture can be applied in a specific snuation. During the latter haH of the ten week course, students

design and build a project. Our intention is to provide students the opportun~y to synthesize and apply

the material they leamed to a real system. To assist students wnh selecting a project, we occasionally

circulate "requests for proposals" to the general faculty for appropriate projects. Students may select a

project from this list or may choose one of their own (subject to our approval on scope and feasibility).

About one third of the projects are selected from the returned suggestions. Enher the faculty member

who made the project request or one of the course instructors serves as the target user who must be

satisfied.

Our course is required for all majors in computer science, and a number of nonmajors take the course as

well. The prerequisne is a course covering programming and an introduction to computer science. We

typically have 25 students per section, most of whom are sophmores. Four sections of the course are

offered each year.

III. Substantial Architectural Features

Students use Apple Macintoshes [Williarns83, Apple86) in a variety of configurations in our dass. The

Macintosh provides many of the sophisticated facilities associated wnh workstations: graphics, sound

synthesizers, networks and a pointing device. We chose the Macintosh over alternatives, such as a Sun

95

www.manaraa.com

workstation, because the Macintosh is relatively inexpensive. In this section, we wish to describe the

available facilities to give a feeling of the breadth of possibilities. In later sections, we illustrate how each

facility was used as a teaching medium in the course.

The Macintosh provides a bit-mapped display along with a substantial graphics library (Quickdraw). These

facilities allowed students to write programs that produced charts, pictures, graphs and other visual results

in addition to the typical text and numeric outputs. Further, the conventional graphics features of the

Macintosh provide a basis for several other libraries that manipulate higher-level graphics. Such

higher-level facilities, such as fonts, windows and menus, provide a basis for sophisticated user interfaces.

A second facility provided by the Macintosh is a sound generator. The generator can be used to produce

simple tones or a free-form wave. Like the graphics facilities, the sound generator has an additional layer of

software that permits higher-level interactions, such as a speech synthesizer.

Like most workstations, the Macintosh provides network software for both point-to-point and broadcast

communication. The machines used by the students in our course were connected together on an

AppleTalk network, as were a laser printer and a file (disk) server. Thus students had the opportunity to use

network services, to create new network services and to write distributed applications.

A fifth facility is an analog pointing device, i.e., a mouse. In combination with the graphics facilities, a

mouse allows for several kinds of user input that are unavailable with conventional terminals.

The students also worked with several implementations of the Macintosh architecture. The Macintoshes

provided to the students had differing amounts of memory, secondary storage and screen size. Slightly

96

www.manaraa.com

different releases of software were also used. The Macintoshes produced output for several kinds of

printers and could get information from several kinds of pointing devices.

The combination of these facilities provides a large space of aHernative methods of computer-user

interaction and an immense amount of available software for system development. Therefore the facilities

allow a student to experience the need to engineer a reasonable system instead of building every piece

from scratch. One key to manipulating the vast array of possibilijies is the use of tools for specifying and

manipulating higher level abstractions that are used by a working system. Without tools, students could

only begin to use small subsets of the features. In the next section, we discuss some of the tools used and

bum by our students.

IV. Use of Tools

Our course placed a heavy emphasis on the use of tools to speed the development process and to aid the

maintenance process. We acquired a large set of commercial tools for use by the students, buitt several

more, and taught several techniques for building tools so that students could augment our facilijies.

Students used two kinds of tools, general-purpose tools and application-dependent tools. The

general-purpose tools include a text edijor, compiler (TML Pascal), interpreter (MacPascal), linker and

low-level debugger. If we had been able to acquire them, we would have had several addijional system

development tools, such as a source-level debugger for the compiled code, a syntax-directed editor and a

source control system. Most of the basic system development tools are well known and students had

previous exposure to them in an earlier class.

Although programs like compilers really are tools that increase productivijy, most students did not view

97

www.manaraa.com

these programs as tools that aided them in their work. Their view was silll>ly that Pascal was the language

of the machine; one used the ednor/compiler to run one's program. When they wrote a Pascal program,

the Pascal code was a running part of the final system. They resisted the idea of building programs that

were not part of the final system -- anything a program could do they could do as well, they thought, by

hand. To overcome this resistance, we had the students use a variety of application-specific tools, we

instructed them on how to build other kinds of tools, and ultimately, we made them build a tool for a

homework assignment.

We emphasized four general classes of tools: interpreters, translators, ednors and monitors. The

taxonomy is our own. One could separate tools into those that are used by a human (e.g., a text ednor)

versus those that are used by a program (e.g., a window manager). Ourtaxaonomy is intended to describe

function rather than method of application, since we feel that an implementation of the same tool can vary

from system to system. Although we do not believe that the space of possible programming aids sharply

breaks into these four categories, n was a convenient way to discuss and illustrate a variety of tools. Below,

we describe each class of tool and give examples of some application-specific tools that we had students

use.

Interpreters

We described an interpreter tool as one that took a specification of an activny and used that specification to

perform the desired action. We did not require the specifications to be free-format text, but allowed

specifications to be given as templates and encoded descriptions (such as integers). The three most used

interpreters were the window manager, the dialog manager and Quickdraw picture interpreter. The window

manager [Apple86] can accept the template of a window and perform the necessary manipulations of the

98

www.manaraa.com

template to provide the desired window. The dialog manager (Apple86) provides a stylized way of

collecting input from the user. Like the window manager, a template describes how information should be

presented to the user and what inputs from the user are acceptable. A Ouickdraw picture is a specification

that encodes a picture that can be scaled, translated and displayed (Jemigan85). Naturally, we covered

conventional interpreters as well, and students built a Simple interpretive calculator as one of their

assignments.

Translators

We described a translator as a program that takes a description of an object or activity and converts" into

another description of that object or activity. The latter description might be run directly on the machine, "

could be given to another translator for further conversion or " could be interpreted.

Students used two translators. One, a program provided by Apple called RMaker, translates a textual

description of Macintosh resources into a binary form (Hertzfeld86). Most of the resources are templates to

be used by various interpreters, such as a window template described above. A second system is called

Thunderscan which is a video dig"izer and image manipulator (Thunderware86). The system can perform

two kinds of translation. First, "can take a picture drawn on a piece of paper and translate" (via hardware)

into its own special representation that" can later interpret for display. Second, the system can translate

from"s own representation to a form usable by other Macintosh software, such as the picture interpreter

mentioned above.

Editors

99

www.manaraa.com

We descnbed an editor as a program that manipulates the description of an object or activity without

changing the description language. The students were already familiar with a text editor for manipulating

their program text. Because the Macintosh has more than text facilities, there naturally exist ecfltors for

more than text. Students used four additional editors during the course.

Three related ecfllors were REdit. ResEdit and Dialog Creator. All three programs are similar in that they

allow the prograrrvner to manipulate objects such as windows and dialogs as those objects would appear

on the screen. When editing a window deSCription, for example, the window is displayed on the screen. To

change where the window should appear, the programmer repositions the window on the screen using

the mouse. When the editing is finished, the current state of the window description is stored. The first two

editors alter the binary template (Macintosh resource) that can be directly interpreted by the appropriate

Macintosh manager. The last editor manipulates the textual template that can be translated by RMaker.

A fourth editor was developed by one of the course staff [Grosz85J. and was used to edit si"""ie songs

using an interface that resembles a piano keyboard. One could create, edit and save songs built with this

editor, and later have a program play them by giving the saved description to the sound facility in the

Macintosh.

Monitors

We described monitors as programs that control or describe the concurrent operation of a system. Many

students had experience with debuggers, either the low-level kind used for assembly language

programming or with a source-level debugger used in an interpreter, and therefore understood the basic

idea of a monitor. Thus students felt comfortable using other monitors that provided information about the

100

www.manaraa.com

correct operation of their system. For example, students who built distributed systems on the network

used the network spy program to observe how parts of their system were communicating. Similarly, we had

a program that could record and playback user interactions in a system along with a real-time clock.

Students used this system to measure the speed of aHernative implementations as seen by the end-user.

However, students were less comfortable wnh the idea of using a monnor tool as a part of their final system.

Because most projects could be cast as one large application, students did not view a monnor as a part of

the final application. But monnors can be used to coordinate several separate programs into a unified

system. To let students experiment with "coordinating" monitors, we gave them two examples: Switcher

[Towner86] and Guided Tour Builder [Seropian85, Clark86].

The swncher program is a poor-man's muHnasking system. It allows several programs to be running at the

same time in the Macintosh (aHhough only one can use the screen, mouse and keyboard at a time). Thus

one can have a word processor, a terminal emulator and a drawing program running at the same time. To

use n effectively as a systems building tool, one must be able to write several cooperating programs. One

project group used this tool to integrate graphical input, text input and examination creation. They wanted

to build a system that allowed both text and graphics to be attached to examination questions, but they did

not want to rebuild complete text and graphics editors. So they built the question editor and, via switcher,

combined n wnh a drawing program and a word processor. Thus they produced a reasonably high quality

system wnh only moderate investments of time.

A second monnor program was the guided tour builder. Guided Tours are collections of programs,

documents (files) and a monitor program (called the Tour Guide) that can record and playback sessions of

user interactions. The intention behind the software is to provide an inexpensive teaching aid - one

101

www.manaraa.com

provides a guided tour showing how to use the system. Only one project produced a guided tour of their

system, but as mentioned before, other projects used the same piece of software for other purposes,

namely recording and analyzing user actions.

v. Use of System Organizations

Because future systems will be built out of small parts, whether hand crafted or generated by tools, a

system needs an overall structure for defining what the pieces are and how they should fit together.

Because the workstation facility provides so many pieces from which to choose, the need to pick an

appropriate system organization is acute. Therefore, we discussed several system organizations that could

be used: some conventional, some unconventional.

Many of the conventional organization and refinement technqiues that apply to the construction of

conventional systems, such as step-wise refinement, top-down design, and layers of abstraction, apply as

well to the construction of systems that use tools in a workstation environment. However, the use of

workstation facilities greatly increases the number of examples of standard techniques to which students

have direct experience. Consider two examples: data abstraction and layered abstractions.

Students frequently are unconvinced about the utility or application of data abstraction since the usual

examples are simple and transparent. Typically, one uses stacks, sets, queues, lists or deques to illustrate

an object and operatiOns on those objects. Unfortunately, the notion of information hiding is frequently

lost because the same examples are immediately used to illustrate pointers or similar implementation

techniques. Further, a list is usually a minor part of an entire system. Thus the students do not really

102

www.manaraa.com

appreciate the value of information hiding, nor how the idea can be applied beyond the textbook data

structures. However, most workstation systems provide a large number of data abstractions for use by the

students. For example, the Macintosh provides windows, dialogs, fonts, menus and a variety of graphics

objects. These objects are more substantial and obviously useful in a system than a stack of integers.

Further, most students do not know how the window system is implemented, and so must take the

specification at face value. They experience the leap of fanh that data abstraction requires. As a result,

students appreciate the value of data abstraction and begin to design their systems using the same ideas.

A second exafl1>le of how workstation facilnies illustrate conventional concept concerns layered

abstraction. Especially when using languages that do not support Smalttalk-80-like objects, a discussion of

layered abstractions is an exercise of unspecified virtual machines and interpreters. However, most

workstation environments provide two natural sequences of abstraction layers: graphics and networks.

Using the Macintosh as our example, the most abstract facilHy used by students are dialogs, which are built

on windows, which are built on graphics ports, which are buitt on bnmaps which are buitt on bit images.

Another example is provided by the layering of network protocols: the unreliable, local datagram is used by

the unreliable internetwork datagram, which is used by the reliable datagram which is used by the reliable

byte stream. At each layer, one can clearly identify those details that are being suppressed and those

higher-level functions that are being provided. Because students use different layers for different

purposes, they get tangible evidence for the usefulness of layered abstractions.

The use of a workstation system allowed us to teach alternative program organizations besides the

conventional ones. Two additional topics that we discussed were event-driven programs and window

management [Apple86, Rosenthal86j. We feel that these topics need to be understood to develop future

systems but are difficult to teach using non-workstation facilHies.

103

www.manaraa.com

When we discuss event-driven programs, we refer to programs that are able to receive any of a number of

circumstances and process it accordingly. By contrast, most programs reach a point during their execution

where they profT1)t the user (or file system) for some input and block awaiting an answer. An event-driven

program makes no demands on the user -- it waits for some asynchronous action and then processes the

event as required. The events could be hardware related: a key on the keyboard being pressed or

released, a timer expiring, a packet arriving on the network or a mouse moving. The events could be

software related: a window has been uncovered or some task is ready to run. In either case, the event is

passed to an appropriate handler for that. event and the program as a whole waits for the next event.

The techniques needed for window management are also new to most students, especially where

multiple, overlapping windows are the primary output medium for a program. The key difference is one of

history. Typical programs on time-sharing systems send a stream of information to a terminal (or file), and

once written, never need to reproduce that stream. On the other hand, a window contains a variety of

information that represents the state of the program. It is a status display rather than a stream and needs to

be reproduced when needed. There are three common times when the information in a window must be

regenerated: when a window is reopened after being closed, when a window is uncovered and when a

window is scrolled. When a window is opened, it is usually blank, but many applications allow windows to

be temporarily closed and reopened as a way for the user to control screen clutter. The display that used to

be in the window must now be regenerated. Similarly when an obscuring window is removed, the

underlying window usually needs its contents redrawn. Finally, when a window is scrolled, the contents

that were previously hidden must now be drawn. (We assume that the window system does not keep a

complete bitmap image of the window's contents.)

104

www.manaraa.com

To provide the information about how to draw a window, the programmer must keep a data structure with

enough information to regenerate the display. This is a foreign concept to many students. They are used

to immediate output, even in a graphics system. For example, when their program needs to draw a

rectangle, they draw a rectangle in the appropriate window. In a single window (or graphics terminal)

system, this approach works fine. But in a workstation environment, the corresponding window could be

partially or completely obscured and the need to display the rectangle postponed until far in the future.

Therefore students are encourged to separate the manipulation of the program's state (or internal data

structures) from the actual drawing on the screen. We teach an approach where programs just manipulate

their intemal state as necessary, and provide a way to display that internal state at any time. To retum to our

previous example, drawing a rectangle is a three step process. First one changes the intemal data

structure to reflect the fact a rectangle has been added to the window. Second, one informs the window

system that certain parts of the window no longer show the correct image. Third, on demand, the window is

redrawn with the new rectangle. Note that the rectangle might not be drawn right away if the window is

covered. Naturally, there are many optimizations that can be made, but such optimizations should be

introduced only after the general model is comprehended by the students.

VI. User interaction issues

Our collection of workstation features opens the door for many possible methods of computer-user

interactions. Typically, courses in software engineering assume a simple conversational interface with

users via a line-at-a-time interface or via a screen-terminal menu system. Because of their graphics, window

facilities, dedicated processing, and picking devices, a workstation provides many more modes of

interaction. We believe many should be covered in modern software engineering courses so that

designers of systems can provide alternatives to users. We cover nine different approaches in our course.

105

www.manaraa.com

We do not make the claim that we are exhaustive, only that we provide a wide exposure to possible

techniques.

Our nine approaches are Simple line-at-a-time text, forms, button picks, menu selection, command keys,

static pictures, animation, sound effects and speech synthesis. Because students are familar with the

simple read-a-line, write-a-line types of interactions, we spend little time discussing those in class. The

fill-in-the-form approach is familar to the students who used the Macintosh since the commonly-used

dialog facility implements the technique directly. Because several tools mentioned above allowed easy

creation of forms, students could trivially provide such facilities in their systems. We force the students to

experiment with "button picks" by requiring an assignment to use that technique: the available commands

for the program are to be displayed in rectangles on the screen and executed when the mouse is pressed

in that rectangle. Similarly, we require students to experiment with various kinds of graphical output in

some assignments. In assignment four, for example, students have to show the area of the screen they

are examining while they perform a search for a particular point. An example done in class demonstrates

how animation can be implemented and the value it has in illustrating the changing state of a system

(Glenn8S]. Through the use of commercial software, we also illustrate how sound effects can provide

qualitative effects (Fenton84, Fenton85) and finally, we show how speech synthesis can be used as an

alternative to text for simple messages (Apple8S].

A related, but different topic concerns how input information can be obtained. Again, the facilities provided

by a workstation environment enlarge the design space of system interactions. We mentioned how a

pointing device can be used to pick an object on the screen, but a pointing device can provide other

information. For example, one can record the trace followed by a mouse in free-hand drawing, or use

derivatives of mouse movement for velocity or acceleration Information. One common application of this

106

www.manaraa.com

information is to control the speed of scrolling in a text window.

When we designed the latest revision of our course, we had in mind several other kinds of user

interactions, inckJding the use of touch screens, track balls, tablets and head-mounted infra-red tracking

devices. Unfortunately, we could not acquire all of the necessary hardware and software in time for use in

our course. We do believe that students should be exposed to these technologies so they can better

experiment with new kinds of user interfaces.

Because we wanted our students to evaluate alternative user interfaces, we needed some aids to allow

students to design altematives and let users see them. We already mentioned one tool that students

applied, the Guided Tour Builder. Students were able to record the actions of users working on a certain

set of tasks and see how much time was spent trying to reach a goal. A second tool was a screen layout

package that allowed students to easily simulate screens of proposed systems without building the

interface. A collection of alternatives could be shown to prospective users for their evaluation and

feedback. Students used these tools when writing their project specifications. Several students told us

that having this kind of precise image of the system helped them design and build it.

VII. Supporting Data Structure and Algorithms

Students in our course are taught advanced data structures as they apply to building large systems. In the

prerequisite course, students leam about stacks, binary trees, sorting and other elementary data

structures and algorithms. When shifting to a workstation environment, a subtle shift of the important

algorithms and data structures takes place, from special cases to more general cases. For example, one

107

www.manaraa.com

shift was from one dimensional to two dimensional techniques. One dimensional techniques work well if a

single datum is presented and processed with a list of other data. For example, in keeping a dictionary of

keywords, one takes a single word and compares it against other single words in the dictionary. However,

the graphics and window facilities of a workstation use rectangles and points rather than a single datum in a

list. For example, to see which point is closest to another point, one needs to search a two dimensional

space. Thus we presented the multidimensional version of binary search trees: KD trees (K dimensional).

Similarly, we expanded the interpretation of boolean connectives (e.g., and, or, xor) into interpretations on

a display, relaxed the assumption of reliable interprocess communication, and showed how iteration can

be unrolled onto a collection machines by spliting and joining.

We feel this is an important shift that must take place in courses that teach student useful algorithms and

approaches for designing systems in and for a workstation environment. Just as certain topics in operating

systems have changed in response to technology (for example, drum scheduling methods are not

emphasized but huge memory allocation techniques are discussed), so too the focus and examples used

for teaching the underlying algorithms and data structures must include discussions of bitmap models of

computations, operations on a plane instead of a line, and distribution of function.

VIII. Experiences in the course

This course has been taught nearly twenty times over the last six years, though recently we shifted the

emphasis of the course to development of systems on workstation environments with tools. Many of the

students' experiences have not changed much from our shift: the course still takes a lot of time, the

material is quite technical and the pace is very fast. However, we noticed four aspects of the course that

convince us we made a good choice in shifting its focus.

108

www.manaraa.com

First, students claim to have a lot of fun. As Alan Perlis has noted, a prime motivating factor in computer

science is to have fun [Perlis7?]. Students clearly enjoyed the abil~y to use sophisticated graphics, sound

generators and the mouse. Thus the students concentrated on what they were doing and, we believe,

more efficiently learned what we were presenting.

A second phenomenon we observed is that the students' projects were more aggressive or sophisticated.

For example, card game programs were always a popular project, but in the past, one person on such a

project was assigned the task of writing the software for displaying cards on a simple graphics terminal.

After a lot of effort, an arguably recognizable deck of cards was usually implemented. During our latest

offering of the Course, a student used a digitizer to read a deck of cards for use in their program. In both the

previous version and the current version of the course, students had to design an appropriate interface

between the abstract cards and the rest of the system. But in the older version, a lot of manpower was

wasted on mastering some very low-level command codes that control our graphics terminals. In the

current version, the student was easily able to present a realistic visual presentation for the project in a

minimum of time. Thus this student now had addilionaltime to work on other aspects of their system, such

as a beller algorithm for automated playing. The resuH: the final system looked beller and provided more

functionality than equivalent systems in previous years. In general, most projects we saw had more

sophisticated user interfaces and performed more complicated tasks.

A third phenomenon was not unexpected: the method and scope of project construction changed

substantially. In particular, we saw a marked increase in tool use and generation, and we saw a decline in

the total code size of projects.

109

www.manaraa.com

Since we emphasized the building of systems by reusing existing facilities and applying tools, it came as

no surprise that students took this advice to heart. Every tool we were able to find was used by at least one

project group. Several project groups built tools of their own. For example, one group built a translator that

took a description of a map and countries, and generated the necessary tables for using that world in a

strategic game. Another group designed a facility for adding windows of documentation and help to an

arbitrary system. A third group built a tool as their project: a sound wave editor. The idea was similar to the

music editor we provided, but allowed manipulation and mixing of sounds based on their Fourier

representation.

Perhaps a corollary to the increased use of tools and libraries is that projects also required carefully

thought-out communication between the pieces. In past years, projects could be patched at the last

minute by one part of the system reaching into another part and modifying some data structure that was

supposed to be hidden. Since many of the facilities used by students in these projects were truly opaque

to the students, the designs of their project had to delineate clearly how various pieces of information were

being generated and distributed.

Because of the increased efficiency of system construction, the projects written by the students were

substantially smaller than in previous years. A typical project in past offerings of the course required about

200 pages of PU1 code. Projects using the techniques and facilities in our version of the course required

about 50 pages of source code (mostly Pascal, but some of the code was speCifications given to tools).

Our fourth observation concerns a phenomenon that did not happen. When we shifted the emphasis of

the course, we were concerned that the general algorithms would be too abstract to grasp at the pace we

were presenting them. Normally when one shifts from one dimension to n dimensions, one loses a certain

110

www.manaraa.com

fraction of students. However, we thought that the algorithms from computational geometry were crucial

for effectively using the newer technologies. We are happy to report that we saw no substanative

difference on the students' part in leaming the different methods.

IX. Conclusions

We feel that leaming how to build systems using tools in an environment that supports good quality

graphics, networks, sound and a pointing device is a necessary part of good undergraduate computer

science education. We are pleased that we were able to present this material by modifying our current

software engineering course. The students who took the revised version of the course enjoyed the

material that was covered and were able to apply it when building their own projects.

We believe that the design and offering of a course like ours is a straightforward task, but one that requires

a conscious decision on the part of the relevant faculty. We believe that most universities do not have the

infrastructure or campus-wide facilites to support a workstation-based project course. Appropriate faculty

members need to specify and acquire new facilities and software for a course like ours to succeed. We do

not know of any good substitute: the only effective way for students to appreciate the deSign and use of

workstation environments is to use and build them. Providing a course such as ours requires extensive

equipment (we had a 2:1 ratio of students to Macintoshes, 3:20 ratio of Imagewriters to Macintoshes, 1 :20

ratio of LaserWriters to Macintoshes, and 1 :15 ratio of file servers to Macintoshes), a capable corse staff

(we had a 8:1 ratio of students to course assistants) and large library of software (a partial list of our materials

is given in appendix II).

X. Acknowledgements

111

www.manaraa.com

Our course has been evolving to its current state over the last two years, with its final jump onto a

workstation (the Macintosh) in the winter 86 offering of the course. People who have taught the course in

the recent past have helped in this evolution and include Paul Chew, Tom Kurtz, David Levine and Vivian

Sewelson. To make this kind of course work successfully, one needs a large complement of qualified staff.

Our able undergraduate course staff, Rob Collins, Larry Gallagher, Jerry Godes, Ed Grosz, Robert Munafo,

and John Scott, created a number of the tools, libraries and demonstrations that students used in the

course. Funding for the development of the Macintosh version of the course was provided in part by the

Interuniversity Consortium for Educational Computing and in part from the Keck Foundation. Apple

provided some of our equipment through a grant to Dartmouth College and assisted us in getting several

tools they developed. Naturally, the students on whom we experimented deserve our thanks for being

cheerful participants.

XI. References

[Apple85]

[Apple86]

[Clark86]

[Hertzfeld86]

[Fenton84]

[Fenton85]

[Glenn85]

Apple Computer Co, Inc., "MaclnTalk 1.1: The Macintosh Speech Synthesizer," May
1985 Software Supplement Update, (Apple Computer Company, Inc.,) June 13, 1985.

Apple Computer Company, Inc., Inside Macintosh, Addison-Wesley, Reading, MA.,
1985,1986, Volumes 1-4.

Cary Clar1<, Tour Tools, Apple Computer Company, Inc., February, 1986.

Andy Hertzfeld, Macintosh Resource Compiler, Version 2.0, (Apple Computer
Company, Inc.,) July 10,1986.

Jay Fenton, Marc A. Canter, Mark S. Pierce, MusicWorks, MacroMind, Inc., Chicago, IL.,
1984.

Jay Fenton, Mark Pierce, Marc Canter, Dan Sadowski, VideoWorl<s, MacroMind, Inc.,
Chicago, IL., 1985.

John Glenn, Binary Trees, Technical Report DCS-TR86-127, Department of
Mathematics and Computer Science, Dartmouth College, Hanover, NH. 03755,

112

www.manaraa.com

September 21,1985.

[Grosz85] Ed Grosz, Music Editor, Technical Report DCS-TR86-114, Department of Mathematics
and Computer Science, Dartmouth College, Hanover, NH. 03755, January, 1985.

[Jernigan85] Ginger Jernigan, "Quickdraw's Internal Picture Definition," Macintosh Technical Note,
Number 21, (Apple Computer Co., Inc.,) Cupertino, CA. April 24, 1985.

[Perlis77j Alan Perlis, "The Keynote Speech," Perspectives on Computer Science: From the 10th
Anniversity Symposium at the Computer Science Department, Carnegie-Mellon
University, Academic Press, 19n, Anita Jones, Editor, p. 1-6.

[Rosenthal86j David S. H. Rosenthal, Window System Implementations: Denver Usenix Course Notes,
Tutorial Materials, Use nix Technical Conference, Denver, CO. January 15-17, 1986.

[Seropian85] Hasmig Seropian, A Guide to Making Guided Tours, (Apple Computer Company,) Inc.,
March 22,1985.

[Thunderware86] Thunderware, Inc., Thunderscan Digitizerforthe Macintosh, Orinda, CA.

[Towner86]

[Williams84]

George Towner, "Inside Switcher," The Software Supplement, (Apple Computer
Company, Inc.,) Vol. I, Issue 3, June 27, 1986.

Gregg Williams, "The Apple Macintosh Computer," Byte Magazine, February, 1984, p.
30-53.

Appendix I - Course Assignments

This appendix gives a brief description of each weekly programming assignment. All of our assignments,
examinations, handouts, sample solutions, example programs and supporting libraries are available on five
double-sided 3112 inch disks (HFS format) from the authors and from the technical report librarian (see
Appendix II).

AsSignment 1: Learning Pascal

The first assignment introduced the students the Pascal development system they were using. Students
wrote 10 exercises requiring them to read a file, parse a sequence of characters into words, do some array
manipulation and perform some Simple graphics operations. Each exercise required about 10 lines of
Pascal.

Assignment 2: Calculator

The second assignment required the students to implement a desk calculator (infix notation with
parentheses and precendence). Students used a line-at-a-time interface provided by the Pascal run-time
system to read a line of text, which they parsed and evaluated using a recursive descent design. Students
were given routines to convert strings to numbers.

113

www.manaraa.com

Assignment 3: Unked Lists

The third assignment required the students to build a linked-list package that supported appending a
datum to the end of list, Inserting a datum in the front of list and deleting a datum from anywhere in the list.
All operations but delete-an-element were done with a line-at-a-time interface. Deletion was done by
displaying the list as a series of boxes and lines, and selecting the box to be deleted with the mouse. The
changed list was then displayed. Students were given the Pascal code for getting access to the graphics
facilities.

Assignment 4: KD-Trees

The fourth assignment required students to create and manipulate a 2-dimensional binary-search tree. A
user could place points on the screen using a mouse. The points were added to the 20 tree as they were
entered. The user could draw a rectangle with the mouse and the program was to perform a search of the
20 tree to locate the points within the rectangle. The state of the search was to be recorded by drawing
lines enclosing the parts of the screen that were being searched. Program commands were denoted by
selecting a button with the mouse from a palette on the side of the screen. Students were provided a
program outline that provided the palette and command dispatch.

Assignment 5: Window Manipulation

The fifth assignment required students to create a simple window application. The program provided two
windows that could be overlapped and resized. Each window could display a collection of rectangles that
the user drew. When a user drew a rectangle in a window, the program had to track the mouse and provide
visual feedback about the rectangle. The pattern of the rectangle could be changed through the use of a
dialog box. The windows could be reshaped and moved about the screen. Desk accessories had to be
supported. Menu items for clearing the current window and deleting a rectangle in the window also had to
be supported. Students were provided with a skeleton program that provided the all of the standard
Interface to the operating system and toolbox, recognized and dispatched all events, and maintained a
single window with a gray background.

Assignment 6: Graphs

The sixth assignment required students to use a provided map, place nodes at cities, bridges and other
landmarks, connect the landmarks with edges, determine the shortest path between two selected nodes,
and display the result by highlighting the shortest route. All interactions with the program were with a
mouse. Modes were selected by using a command palette (like in assignment 4); modes were indicated by
changing the cursor shape. Students were provided with a skeleton program similar to the one in
assignment 4.

Assignment 7: Enhanced Dialog Manager

The seventh assignment required students to build another toolbox manager called the Enhanced Dialog
Manager. The new manager would provide easier access dialogs by automatically managing radio buttons
and check boxes as well as editable text fl8lds. Students were given several programs that used the new
manager for testing.

114

www.manaraa.com

Assignment 8: Backtracking

Students wrote a Pascal program to generate a solution to the 8-</ueens problem using recursion and
backtracking. No special user interface was specified. This assignment was intended to be simple to allow
students time to work on their projects.

Appendix II - Course Materials

We used two kinds of course materials: printed materials such as articles and book, and machine materials,
such as programs, libraries and files. We describe each collection below.

11.1 Printed Materials

Most of our printed materials are readily available.

Aho, Hopcroft, and Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.

Jon Bentley, "Multidimensional Binary Search Treees Used for Associative
Searching", CACM, vol. 18, no. 9, Sept. 1975, pp. 509-517.

J. C. Enos and R. L. van Tilburg, "Software DeSign," Computer, Vol. 14, No.2, February 1981, p. 61-83.

Jerome Friedman and Jon Bentley, "An Algorithm for Finding Best Matches in Logarithmic Expected
Time", ACM Trans. on Mahtematical Software, Vol. 3, No.3, Sept. 1977, pp. 209-226.

Leo Guibas and Robert Sedgewick, "A Dichromatic Framework for Balanced Trees", 19th Symp. on the
Foundations of Computer Science, Oct. 1978, pp. 8-21.

Butler Lampson, "Hints for Computer System Design," IEEE Software, January 1984, p. 11-28.

David L. Parnas, "On the Criteria to be in Decomposing Systems into Modules", CACM, Vol. 15, No. 12,
December 1972, p. 1053-1058.

Robert Sedgewick, Algorithms, Addison-Wesley, 1983.

N. Wirth, "Program Development by Stepwise Refinement," CACM, Vol. 14, No.4, April 1971 , p. 221-227.

11.2 Machine Materials

Our collection of materials for the Macintosh came from a variety of sources, including commercial software
houses, user groups, commercial data services, various computer-network mailing lists, visitors and
companies. Many of our sources no longer distribute their materials. Therefore, we have provided a list of
materials by the most common name we could determine, and have indicated where we think one can
obtain these materials as of this writing (see key code at the bottom of the list).

115

www.manaraa.com

Program Name
3-D Edit
AD Edit
Animation Toolkit
Asm
ASCII chart
Atlas
Base to Base
Bases
Binary Trees
Boot Configure
ConCode
Copy Disk
CopyliMac
Coroutine package
Crash Saver
Cursor Designer
DeRsrc
Dialog Creator
Didier
DisAsm
Disk Info
DiskUtii
Dissbits
Drill
Dynamo
EDialog
Edit
Event Tutor
Exception Edit
Extras
FEdit
Fat Bits DA
File Tools
Font Blaster
FontlDA Mover
Font Display
Font Doubler
Font Editor
Font Librarian
Graph Illustrator
Guided Tour Constructor
Help unit
Hex Calc
Icon Editor
Icon Maker
I Edit
KD Tree Illustrator

Description
3-D object editor
Alert/Dialog editor
Animation frame editor
68000 Assembler
(obvious)
Picture database manager
Hex/OctaVDec converter
Hex/Octal/Dec converter
Binary tree illustrator
Configuration editor
68000 programming aid
4 swap disk copier
General disk copier
Pascal library
Crash recovery library
Cursor editor
Resource decompiler
Dialog editor
Text file manipulator
68000 disassembler
File manipulation
File manipulation
Graphics package
CAl interpreter
Animation constructor
Dialog manager replacement
Text editor
Demonstrates event handling
Speech macro editor
File manipulator
Disk editor
Mouse tracker
File manipulation
Animation-to-font converter
Resource installer
Font illustrator
Font manipulator
(obvious)
Font manipulation
Example graph program
Demonstration creator
Library package
Hexadecimal calculator
(obvious)
Icon editor
Icon editor
Example KD program

116

Where to Get
BCS (49)
EDUCOMP (222)
AAS
Apple (part of MDS)
BCS (Dev2)
Kiewit
BCS(DA4)
BCS (Dev2)
Kiewit
BCS (UtiI3)
BCS (DA2)
Apple
Central Point
Math&CS
BCS (Util4)
BCS (Dev3)
BCS (Dev 1)
BCS (24)
BCS (Util2)
BCS (Dev4)
BCS (DA 1)
BCS (Util2)
Kiewit
Kiewit
BCS (Games 6)
Math&CS
BCS(Util2)
Kiewit
BCS(Dev2)
BCS (DA 1)
BCS (Util3)
BCS (10)
BCS (DA4)
AAS
BCS (DA 1)
BCS(29)
BCS (Util2)
EDUCOMP (42)
BCS (Font 3)
Math&CS
APDA, Mac. Journaling & Guided Tour
Kiewit
BCS (Dev2)
EDUCOMP (223)
BCS (DA2)
BCS(UtiI2)
Math&CS

www.manaraa.com

KNet
Launch
Localizer
Logic
Link
MacDB
MacDraw
Macintalk
Macintosh Toolbox
MacPaint
MacWrite
Macsbug
MacTools
Mass Initianzer
Maze
Menu Edit
MEdit
Menu Clock
MiniFinder

Mousometer DA
Multi-scrap
Music
New Key Caps
Other ...
Overlay
Paint Mover
Painter's Helper
Pascal
Peek
Poke
Purgelcons
RamStart
RasNix
Read Lisa
REdit
ResEdit
Resume
RMaker
RMover
Screen Layout
ScrnEdit
Set File
SetFilelnfo
Skel
Screen Maker
Skip Finder
Slide Show

NetworK stream library
Program execution tool
Resource editor
Example object program
68000 Linker
68000 assembly debugger
Object-oriented graphics editor
Speech synthesizer
Libraries
Bit-oriented graphics editor
Word processor
68000 assembly debugger
File and disk manipulator
Disk utility
Example networK program
Menu resource editor
Macro text edtior
TImer
Command shell

Mouse measurements
Graphics filer
Sound editor
Keyboard mapping tool
Desk Accessory test tool
Graphics integrator
Graphics integrator
Object-oriented graphics editors
Pascal compiler
NetworK packet spy
NetworK packet injector
Desktop file utility
Memory utility
Command shell
Disk utility
Resource editor
Resource editor
Crash recovery library
Resource compiler
Resource manipulator
Screen design package
Configuration editor
File utility
File utility
Example program
Graphics translator
Command utility
Graphics demonstrator

117

Kiewit
BCS (DA3)
BCS (Util2)
Math & CS
TML
Apple
Apple
BCS (Dev2)
Part of Macintosh Computer
Apple
Apple
Apple
Central Point
BCS(Util2)
Math & CS
BCS (Util2)
BCS(Util6)
BCS (UtU3)
APDA (Macintosh System Software
for Developers)
BCS (10)
BCS (DA 1)
Math&CS
BCS (DA 1)
BCS (DA2)
Kiewit
BCS (Graphics 2)
(BCS 15)
TML
BCS (Dev 1)
BCS (Dev 1)
BCS (UtilS)
BCS (Util1)
BCS (DA2)
BCS(Util2)
BCS (Util1)
BCS (Util1)
Math&CS
TML
EDUCOMP (222)
Kiewit
BCS (Dev 1)
EDUCOMP (222)
BCS(Util5)
Kiewit
BCS (Dev 1)
BCS (DA 1)
BCS (Graphics 3)

www.manaraa.com

Speech Lab
Squeeze File
StrCvt
Switcher
Tasking package
Thunderscan
Uriah Heap
Utils
VideoWol'ks
XUServe

Keys:

Speech editor
Text manipulator
String conversion library
Command shell
Programming library
Video digitizer
Memory monitor
File manipulation
Animation editor
File (disk) server

APDA (name of the product followed in parentheses):

Apple Programmer's and Developer's Association
290 SW 43rd St.
Renton, WA 98055

MS. (name of program is the name of the product):

Ann Arbor Softworks, Inc.
308112 S. State Street
Ann Arbor, MI48104

BCS (Dev2)
BCS (12)
Math&CS
APDA (Switcher Developer's Kit)
Math&CS
Thunderware
BCS (10)
BCS (DA4)
Macro Mind
InfoSphere

~ (name of program is name of product, except for debuggers and assembler, which are part of the
MDS product):

Local Apple dealer

!3.QS (the name or number of the disk followed in parentheses):

Boston Computer Society
BCS-Mac 1
Center Plaza
Boston, MA 02108

Central Point (the product is CopyliMac, which includes MacTools):

Central Point Software, Inc.
9700 SW Capitol Highway, #100
Portland, OR 97219

EPUCOMP (the number of the disk followed in parentheses):

EDUCOMP
2431 Oxford Avenue

118

www.manaraa.com

CardHf, CA 92007

InfoSohere (product was XUServe, updated now to MacServer):

InfoSphere
4730 SW Macadam Avenue
Portland, OR 97201

KiewH:

Courseware Development Group
KiewH Computation Center
Dartmouth College
Hanover, NH 03755

Macro Mind (name of program is the name of the product):

Hayden Software
600 Suffolk SI.
Lowell, MA 01854

Math&CS:

Technical Report Librarian
Department of Mathematics and Computer Science
Bradley Hall
Dartmouth College
Hanover, NH 03755

Thunderware (name of the product is Thunderscan):

Thunderware, Inc.
21 Orinda Way
Orinda, CA 94563

TML (name of the product is MacLanguage Series Pascal):

TMLSystems
PO Box 361626
Melbourne, FL 32936

119

www.manaraa.com

A First Course in Computer Science:
Mathematical Principles for Software Engineering

H.D. Mills, V.R. Basili, J.D. Gannon, R.G. Hamlet

Abstract

The discipline of software engineering has transferred the common-sense methods of good pro
gramming and management to large software projects. It has been less successful in acquiring a
solid theoretical foundation for these methods. We have developed an introductory computer
science course, much as calculus is a basic course for mathematics and the physical sciences,
concerned primarily with theoretical foundations and methodology rather than apprenticeship
through applications. This paper describes the principles taught in the course and gives part of
a small example illustrating them.

Authors' addresses: Drs. Mills, Basili and Gannon, Department of Computer Science, University
of Maryland, College Park, MD 20742; Dr. Hamlet, Department of Computer Science, Oregon
Graduate Center, Beaverton, OR 97006. Research of Drs. Basili, Gannon, and Hamlet was par
tially supported by the Air Force Office of Scientific Research under contract F49620-83-K-0018.

www.manaraa.com

1. Introduction

Software engineering is the name given to the art of programming (and surrounding activities)
when art is replaced by a discipline using well defined methods and formal skills. During the
last two decades, a great deal has been learned about good programming practices: structured
programming [Dijkstra 72], [Wirth 71], information hiding [Parnas 72), data abstraction [Hoare
72). The spread of this knowledge beyond expert programmers can be credited to software
engineering. The transfer of knowledge to routinely trained technicians, the codification of com
mon sense, and the introduction of management control are certainly functions proper to
engineering, and software engineering has accomplished these things for programming.

The success and growth of any engineering discipline has never rested entirely on organization
of trial-and-error knowledge, however. Application of deep theoretical results is also required to
progress beyond the initial success that spreading common sense brings. The role of the
engineer is sometimes to invent the required theory; more often it is only to apply an idea from
a more abstract discipline to a problem the engineer understands. Furthermore, the application
must meet a requirement peculiar to engineering: it must be in a form that can be used to solve
practical problems.

The work of [Naur 66), [Floyd 67), [Hoare 69), [Hoare 71), [Mills 72], and [Dijkstra 76] comprise a
theoretical framework for programming based on mathematical foundations. This work contin
ues to inspire advances in formal specification, programming language semantics, and program
verification. Because our understandings of these topics are quite recent, people regard them as
subjects fit for graduate classes. Our belief is that the time has come for computer science stu
dents to start out with these ideas, not end up with them. At their roots, these deep simplici
ties can be formulated in classical mathematics, discrete mathematics. This is material that
undergraduates can learn easily, because understanding it does not require a wide context of
programming experience. And by teaching objective principles of syntax, semantics, correctness,
and abstraction, we arm the student with soiution patterns so that program design becomes a
familiar problem-solving process with new-found mental tools in a new domain.

We have developed a two-semester, eight-credit ~asic course for computer science [Mills 86]
much as calculus is a basic course for mathematics and the physical sciences, concerned pri
marily with methodology rather than subject matter. In fact we introduce a "program calculus"
that deals with the functions computed by programs. Just as for ordinary calculus, there are
two main problems in the program calculus. First, given a program, find its meaning (its
derivative), and second, given a meaning, find a program with that meaning (its integral). This
ability to derive functions from programs in the program calculus is of great value in computer
science and engineering as well. First, it permits a mathematical treatment of program correct
ness, namely whether a program specifies correct behavior of the computer for every possible
input. But even more importantly, it leads to a systematic design discipline for writing pro
grams that are correct to begin with, and which do not require debugging.

2. Topics

In this section we outline the major principles covered in the course. They represent a synthesis
of an integrated theoretical foundation for programming. They can be characterized by a
mathematical formalism, simplified to the level necessary for the problem at hand, covering a

121

www.manaraa.com

large piece of the programming domain in a consistent way and permitting the process to be
scaled up to deal with larger problems.

The simplicity and generality of the formalism permit the material to be taught to beginning
college students. It forms a basis for their understanding of the programming process and pro
duct, and acts acts as a mechanism for communication.

2.1. Programming Methods

During the first semester, programs are developed using stepwise refinement, while in the follow
ing semester systems of programs and data are constructed using data abstraction. Program
ming has two distinct phases:

(1) Design -thinking out what the program should be in order to solve the problem.

(2) Development -putting the program text in execution form.

In the stepwise refinement of a program, text designed to carry out a task in more detail is
called a design part. A design part may itself contain more detailed task descriptions (in the
form of comments) to be carried out by additional design parts. The result of the design phase
will be a hierarchy of design parts which collectively solve the problem at hand. Each design
part is !L statement typically with 5 to 15 lines, perhaps with two to four tasks left to be
designed at the next level.

After the program has been entirely refined into a hierarchy of design parts, the translation into
machine-readable form begins. A sequence of executable programs, each reflecting a larger part
of the design, can facilitate orderly and systematic translation into Pascal. Each program in
such a sequence is called a development program. Development programs are accumulations of
design parts, which grow in size until the entire design has been turned into Pascal. Each
development program is defined so that it can be executed and tested to verify correct transla
tion at each step of development.

In practice, the translation of a design into Pascal can be done in chunks larger than one design
step, typically 15 to 50 lines at a time. That is, each successive development program is created
by combining a few more design parts with the last tested development program. In order to
verify correct execution, it may be necessary to include temporary WRITE statements to create
visible output.

In data abstraction a system of procedures and data declarations are defined in such a way that
these procedures provide the only means of access to this data. Since users of the abstract data
access it through procedures rather than directly, their programs are unaffected by changes to
the abstraction's data declarations (which might be made to improve functionality or efficiency).

During program integration, a top-down, functional approach to testing was adopted, integrat
ing higher level design parts of the program a step at a time during the development .. Abstract
data types represent potentially reusable modules, and should be tested independently of their
uses in programs. To test an abstract type functionally, the legal combinations of the opera
tions should be applied to representative abstract objects (e.g., an empty object, a full object,
etc.).

122

www.manaraa.com

2.2. Programming Languages

Programs are written in three increasingly complex subsets of the programming language Pascal.
In the simplest subset, CF Pascal, there is but a single kind of data (characters) and a single
data structure (files of characters that can only be accessed sequentially). Restricting our atten
tion to so simple a language emphasizes program design rather than programming language
features. The character and file serve as the ruler and compass of programming.

Small, but classical, problems lead to interesting program design problems in CF Pascal. For
example, breaking a text file into lines of a given length (given by the length of a file of blanks
-- there are no integers!) takes quite a bit of programming. It simply cannot be done without a
working sense of abstraction. Sorting and reversing files in n X In(n) rates are also challenges.
And motivations are not hard to develop. Consider adding two hundred-digit numbers in
different files and writing the result to a third file. The input files are read left to right, but
digits must be added and carries computed from right to left. It is easy to see that the problem
requires one pass over the two files for the add and carry logic but three file reverses. With an
n2 reverse, the solution will execute in n + 3n2 time where it only takes n for what seemed the
hard part. So reducing n + 3n2 to n + 3nXln(n) by finding an nXln(n) reverse becomes an
interesting problem. CF Pascal is a teacher's helper in a real sense -- an austere tool that
rewards good programs in a visible way.

The second language subset, D Pascal, permits the same functions to be created with smaller
and simpler programs than is possible in CF Pascal. D Pascal also contains language features
(type declarations and records) needed to implement data abstractions. Prior data abstractions
become concrete language features in D Pascal. The final Pascal subset, 0 Pascal, introduces
powerful control structures and data types to help optimize programs by providing random
access to statements and data. 0 Pascal language features such as goto statements, arrays and
pointers should be used only when they are needed for algorithm optimization and when their
functions can be determined and verified at least informally.

2.3. Mathematical Basis

The entire mathematical basis for the program calculus rests on just five discrete mathematical
structures of character data: strings, lists, sets, relations, and functions. These five structures
are not only sufficient to deal with program correctness and program design, but also admit
treatment at various levels of formality with a mixture of English and mathematical notation.

Some sets are more easily and precisely described in English than in mathematics, but are sets
no less because of the mode of their description. Many programming problems are better stated
in English than mathematics, and we need to be able to treat questions of program correctness
and design independent of the mode of description. It may seem surprising at first to discover
that a mathematical discipline is possible for dealing with English as well as mathematical
descriptions, but we will see that is so.

The mathematical property we study in programs is their effect on computer behavior. The
functional behavior of a program that sorts strings will be independent of the programming
language and the exact form of the program itself. That is, understanding a program as a
mathematical object is understanding the functional behavior it induces in a computer.

123

www.manaraa.com

An execution state is a relation or function whose domain is the identifiers of a program and
whose range is the values attached to those identifiers. The semantic meaning of a program will
be a mathematical relation or function, a set of ordered pairs that defines a correspondence
between one state (the inputs) and another state (the outputs). The meaning of a program will
be taken to be the transformation implied by this correspondence; certain outputs are paired
with certain inputs because given any such input, the program instructs the Pascal machine to
compute that output.

2.4. Meanings or Program Parts

It is convenient to have a notation for meaning relations or functions, and we adopt a conven
tion similar to one used by Kleene: the meaning function corresponding to a program object is
denoted by a box around that object. The meaning of an identifier VI in execution state s is
simply the value of VI in the state.

ffiJ (s)= s(VI).

Values of literal character expressions do not depend on the execution state at all. The meaning
of an assignment statement is a function from execution states to execution states. The intui
tive meaning of the assignment statement as an execution state transformation is that the
identifier on the left side ceases to be associated with an old value, and becomes associated with
a new value, obtained from the expression on the right side.

I VI := V21 = {<r,s> : s is the same as r except that ffiJ (s) = 1 V21 (r)}

The meaning of an IF statement with Boolean condition b and statements t and e is:

I IF b THEN t ELSE e 1 = {<s, ill s>: ill (s)} u {<s, @s>:.., ill (r)}.

The first set contains all state pairs in which the condition b holds, and the second set those
pairs in which the condition does not hold. There is no evaluation of these sets in some order.
They simply contain or fail to contain certain pairs.

The meaning of a WHILE statement with Boolean condition b and statement d is defined
recursively:

1 WHILE b DO d 1 = 1 IF b THEN BEGIN d; WHILE b DO d END 1

The right side of this definition can be rewritten as the composition of two functions:

1 WHILE b DO d 1 = 1 IF b THEN d 1 0 1 WHILE b DO d 1

Although this definition does not permit us to derive the meaning of a WHILE statement, it is a
recurrence equation whose solutions (the meaning of the WHILE statement) can be checked by
substitution. A function f is the meaning of a WHILE statement if it satisfies three conditions:

1. domain(f) = domain(1 WHILE b DO d 1)

2. (1 NOT (b) I f) = (1 NOT (b) 1- I)

124

www.manaraa.com

3. r = I IF b THEN d lor

2.5. Determining the Meaning of Program Parts

A concurrent assignment summarizes the effects of several statements, mapping one state to
another. A list of variables is written on the left side of the assignment operator, and a list of
expressions on the right side, these two lists being of equal length. The expressions, computed
all at the same time, are the values taken by the corresponding variables.

Conditional assignments can be defined recursively by the following rules:

(1) A concurrent assignment is a conditional assignment.

(2) If b is a Boolean condition and c is a conditional assignment, then (b - c) is a condi
tional assignment.

(3) If b is a Boolean condition and c, d are conditional assignments, then (b - c) I d is a
conditional assignment.

The meaning of a conditional assignment of the form

for any number of Boolean conditions (bi) and conditional assignments (c) is the meaning of
first conditional assignment, say cp such that

(1) all Boolean conditions before bi have value false in state s, and

(2) Boolean condition b. has value true.
I

The meaning is undefined for state s if any of the following occur:

(1) none of the Boolean conditions evaluates to true in s;

(2) the first Boolean expression that does not evaluate to false is undefined for s;

(3) the conditional assignment selected by the Boolean expression is undefined for s.

For example, the meaning of the statement

BEGIN
VI:= V2;
V2:= V3;
IF VI < V2 THEN V3 := VI
ELSE V3:= V2

END

can be expressed as the conditional assignment:

(V2<V3 - VI, V2, V3 := V2, V3, V2) I (V2~V3 - VI, V2 := V2, V3)

Symbolic execution is a method of tracing the values of variables through execution using only
their names, not particular values. A trace table is a systematic method for carrying out sym
bolic execution. Like an execution table, a trace table has a row for each statement that is

125

www.manaraa.com

executed, and a column for each variable that might acquire a new value during execution.
However, the "values" in a trace table are expressions, and the rows keep track of current
expressions in terms of the original, starting expressions. A conditional trace table is a trace
table with an additional column of conditions, namely those required for the assignments in the
table to take place. For example, the BEGIN statement above will use one of two sequences of
assignments, namely

VI := V2j V2 := va~ va := VI or VI := V2j V2 := va; va := V2

depending on whether the THEN or ELSE part of the IF statement is selected during execution.
Each sequence can be handled by a separate conditional trace table. The table for the case
when the THEN part is executed is shown below.

Statement Condition VI V2 va
VI:= V2 V2
V2:= va va
IF VI < V2 V2 < va
THEN va := VI V2

Each row of the table shows values in terms of the original variables. The condition V2<Va in
the third row is the value of VI <V2, because at that point VI has the original value of V2, and
V2 has the original value of va (obtained from the row above). The net result for this condi
tional trace table is a conditional assignment

(V2 < va - VI, V2, va:= V2, va, V2)

2.8. Program Correctness

Given a program specification relation r and a program P, we say that P is correct with respect
to r if, for every member x of the domain of r (an instance of input data), P produces some
member of the range of r which corresponds to x. That is, for each input x, P produces result y
such that <x,y> E r. What P does to input data not in the domain of r is not important since
r should define all behavior important to the problem solver. A simplifying condition for demon
strating that a program satisfies its specification is given in the following theorem, called the
Correctness Theorem.

Correctness Theorem. Program P is correct with respect to specification relation r if and only if

domain(r n IIJ) = domain(r).

Note, if r is a function, f, then the following Corollary holds.

Correctness Corollary. Program P is correct with respect to specification function r if and only
if

fn P = f.

126

www.manaraa.com

2.7. Data Abstraction Correctness

The essence of data abstraction is captured by a diagram showing the relationship between the
concrete world objects manipulated by Pascal procedures (e.g., P), and the abstract world
objects the programmer manipulates with abstract operations (e.g., m) to achieve a solution. A
mapping must be defined between the values of concrete objects and the values of the
corresponding abstract objects. We call this the representation mapping, and for any type
denote it At . By convention, for objects common to the concrete and abstract worlds, the
representatiJrinapping is identity. Then for any concrete state, the representation mapping
can be extended to map the state to an abstract state.

{abstract states}
r
I
Atype

I
I

{concrete states}

-- m

-If]

----+ {abstract states}
t
I
Atype

I
I

----+ {concrete states}

Intuitively, an implementation is correct if its data objects are manipulated in such a way that
the abstract objects to which they correspond, appear to be transformed according to the
abstract operations. That is, correct implementation uses the concrete procedures and data, but
in a way that mirrors the abstraction. To decide if this property holds, we show that the
diagram commutes.

Atype 0 m ~ If] 0 Atype

Of course abstract operations like m do not really exist except in users' minds. Pascal pro
cedures implementing abstract operations are written with two sets of comments labelled "abs:"
and "con:." The "abs:" comments are added to modules so that users, those in the abstract
world, need not examine the code (or even the "con:" comments that document it). The "abs"
comments replace the abstract operations in demonstrations that diagrams commute. If the
implementation has been done properly, the abstract comment can be believed, and used in
proofs at the abstract level.

3. A Partial Example

In this section, we carry out a partial example that illustrates both stepwise refinement and
data abstraction. The example, to print a list of prime numbers, is large enough to require the
judicious use of formar proofs, embedded in a broader activity of informal reasoning and design.
In particular, the example illustrates that stepwise refinement permits the control of details,
step by step, in both data and operations. For example, a subspecification need only treat vari
ables that are used in the design it supports and not the variables that are introduced for its
implementation. This property of deferring details while maintaining absolute control of the
design is essential in scaling up methods of "programming in the small" to "programming in the
large." Both stepwise refinement and data abstraction are vital in this scaling up exercise. Step
wise refinement permits the deferring of details directly as a program is elaborated a program

127

www.manaraa.com

part at a time. Data abstraction permits the deferring of details indirectly, but with even more
power, by increasing the capability of the underlying design primitives from Pastal to whatever
data abstractions (written in Pascal) are needed.

3.1. Developing and Proving the Solution

In this section, we illustrate a typical design step in a small problem. Given a number N~2, we
want to print the list of prime numbers P such that 2:5P:5N. One solution is printing the only
even prime Dumber and constructing a list containing the remaining prime numbers which are
all odd. By dividing the next odd number by each of the list elements, we can determine if the
number is prime. (In this example, the list is denoted by angle brackets and list concatenation
by ampersand (&).)

Design Part 1
{print the list of prime numbers P such that 2:5P:5 N}

WRITELN(2);
EmptyList(Primes);
NextP:= 3;
{Primes := Primes & ND(NextP,NextP,N,Primes)};
{print Primes}

EmptyList ~ an operation on abstract objects of type "list of integers" that initializes a list
object that contains no elements,

PROCEDURE EmptyList(VAR L: List);
{ abs: L := < > }

ND(L,C,U,Primes) is a list of numbers between C and U that are not divisible by any of the
numbers in Primes nor any of the numbers between Land C-2. It is defined as follows:

{
<C:"ij PE(Primes&ND(L,L,C-2,Primes)), (C mod P)~O>

ND(L,C,U,Primes) = & ND(L,C+2,U,Primes) if L::;C::;U
< > ifL;::C>.U

We can use a trace table to calculate the value of Primes that is printed at the end of Design
Part 1.

Condition Primes NextP

<>
3

< > & ND(3,3,N,< »

Assuming N~3 and expanding NO's definition, we obtain

128

www.manaraa.com

ND(3,3,N,<» = «3:\1 PE«>&ND(3,3,l,<»), (3 mod P)~ 0>
& ND(3,5,N, < >))

= <3> & «5:V' PE«>&ND(3,3,3,<>)), (5 mod P)~ 0>
& ND(3,7,N,<>))

= <3> & «5:\1 PEt < >&<3>)), (5 mod P)~ 0>
& ND(3,7,N,<>))

When an odd number i is considered for membership in ND, it is divided by the odd numbers
between 3 and i-e that are already members of ND.

The fourth step of Design Part 1 can be relined into the following design part.

Design Part 1.1
{Primes := Primes & ND(NextP,NextP,N,Primes)}

WHILE NextP <= N
DO
BEG~

{IsPrime := (for all members P of Primes, (NextP mod P) ~ O)};
IF IsPrime THEN Append(Primes,NextP);
NextP := NextP + 2

END

Append is another operation on list objects that concatenates a singleton list to the end of an
existing list.

PROCEDURE Append(VAR L: List; Elt: EltType);
{ abs: (Length(L) < MaxSize - L := L & <Elt>) I

(Length(L) ~ MaxSize - I) }

If the design is under intellectual control at this point, we need to demonstrate that the WHILE
statement above (which we call W) meets its function specilication. In order to do this, we lirst
determine f, the meaning of W, and show that it has the three properties listed at the end of
Section 2.4.

f = (NextP$N - Primes := Primes & ND(NextP,:"I1extP,N,Primes)) I
(NextP>N - I)

f is identical to the comment in Design Part 1.1 because !\1)(NextP,NextP,N,Primes)=< >
when NextP>N. In order to make the yerilication process easier, we eliminate details intro
duced by purely local variables (like NextP whose value is not needed after W terminates), and
size constraints on objects (like the length of Primes).

The three steps of the proof are:

1. domain(f} = domain(r:m }

129

www.manaraa.com

domain(f) = (NextP~N and ND(NextP,NextP,N,Primes) is defined)) or (NextP>N)

ND(NextP,NextP.N,Primes) is defined whenever the mod function within it is defined, i.e. if
either ~Primes or ~ND(NextP,NextP,N-2,Primes). The second condition could be false only
if Primes=< >. NextP=O, and NextP«N-2). W terminates immediately if NextP>N. If
NextP~N, the body of W is executed, and normal termination occurs if NextP is incremented
on each execution of the body of Wand if the result of the mod function is defined for all
members of Primes on each iteration. The mod function is defined if O~Primes and if 0 is not
one of the values of NextP appended to Primes (i.e., Primes=< >, NextP=O, and
NextP < (N-2)).

2. (NextP > N -+ f) = (NextP > N - I)

When f's domain is restricted to those states for which the WHILE condition evaluates to false,
f is an identity function.

(NextP > N - f) =
(NextP>N and NextP~N -+ Primes := Primes & ND(NextP,NextP,N,Primes)) I
(NextP>N and NextP>N -+ I)

which reduces to

((false - ...) I (NextP>N -+ I)) = (NextP>N -+ I),

an identity function.

3. Let IF be

IF NextP <= N
THEN

BEGIN
{IsPrime := (for all members P of Primes, (NextP mod P) ~ O)};
IF IsPrime THEN Append(Primes,NextP);
NextP := NextP + 2

END

then &J is

(NextP~N and (\iPEPrimes, (NextP mod P) ::/= 0) -
Primes, NextP := Primes & <NextP>, NextP+2) I

(NextP~N and :3PEPrimes, (NextP mod P) = 0 -+

NextP := NextP+2) I
(NextP>N -+ I)

We must demonstrate f = &J 0 f. Trace tables provide a convenient way to study the compo
sition, showing the effect of each part of &J composed with r.

130

www.manaraa.com

Condition Primes NextP

NextP<N Primes & <NextP> NextP+2
and (\fPEPrimes, (NextP mod P) ~ 0)

(NextP+2)$N Primes & <NextP> &
ND(NextP+2,NextP+2,N,

Primes&< NextP >)

This trace table computes the part function:

(NextP+2)$N and (\fPE Primes, (NextP mod P) ~ 0) .-
Primes := Primes & <NextP> & ND(NextP+2,NextP+2,N,Primes & <NextP»

We need to show

«NextP> & ND(NextP+2,NextP+2,N,Primes&<NextP») = ND(NextP,NextP,N)

in the domain of this part function. Since ND(NextP,NextP,NextP-2,Primes) is < >, when
ND(NextP,NextP,N,Primes) is expanded,we obtain

1 < NextP:\f PePrimes, (NextP mod P),.O>
ND(NextP,NextP,N,Primes) = & ND(NextP,NextP+2,N,Primes) if NextP$NextP$N

< > if NextP~NextP>N

Expanding ND(NextP,NextP+2,N,Primes) next, we get

ND(NextP,NextP+2,N,Primes) =

1 <NextP+2:\f Pe(Primes&ND(NextP,NextP,NextP ,Primes)), «NextP+2) mod P),.O>
& ND(NextP,NextPH,N,PriIPes) if NextP+2$NextP+2$N

<> ifNextP+2~NextP+2>N

ND(NextP,NextP,NextP,Primes) = <NextP: \fPEPrimes, (NextP mod P)~O>. Thus, where
the domain guard of the part function is true, ND(J'lextP,NextP,N,Primes) is

<NextP> & < NextP+2:\f Pe(Primes&< NextP>), ((NextP+2) mod P),.O>
& ND(NextP,NextP+4,N,Primes)

When <NextP> & ND(NextP+2,NextP+2,N,Primes&<NextP» is expanded in the part of
its domain in which NextP+2:5N, we get

<NextP> & <NextP+2:\f Pe(Primes & < NextP>), «NextP+2) mod P),.O>
& ND(NextP+2,NextP+4,N,Primes&<NextP»

These two sequences are identical if

ND(NextP ,NextP +4,N,Primes) = ND(NextP +2,NextP +4,N ,Primes& < NextP >)

Both these terms represent sequences of numbers between NextP+4 and N that are tested to
determine if they are divisible by any number in another sequence of numbers. The first term
checks candidate numbers against those in Primes, NextP, and NextP+2. The second term uses
numbers from Primes&<NextP> and NextP+2. Thus the terms must be identical, and the
part function can be rewritten as

131

www.manaraa.com

(NextP+2)~N and (\iPEPrimes, (NextP mod P) ~ 0) -
Primes := Primes & ND(NextP,NextP,N,Primes)

The next case resulting from this composition is

Condition Primes
NextP<N and
(\fPE Primes, (NextP mod P) :F 0)

Primes& < NextP >

(NextP+2»N Primes & <NextP> &
ND(NextP+2,NextP+2,N,

Primes&<NextP>)

This trace table computes the part function:

(N-2)<NextP~N and (\iPEPrimes, (NextP mod P) i: 0) -
Primes := Primes & <NextP> & < >

~extP

T\extP+2

In the domain (N-2)<NextP~N where no member of Primes divides NextP evenly

ND(NextP,NextP,N,Primes) = «NextP> & < »

so this part function could be combined with the previous part function to obtain

NextP~N and (\iPEPrimes, (NextP mod P) i: 0) -
Primes:= Primes & ND(NextP,NextP,N,Primes)

We need to perform four more function compositions to obtain the rest of the function:

(NextP~:'I1 and (:3PEPrimes, (NextP mod P) = 0) -
Primes := Primes & ND(NextP,NextP,N,Primes)) I

(NextP > N - I)

which, combined with the already computed parts yields a function that is identical t() f.

3.2. Verifying the Data Abstraction

In refining the remainder of the loop body, additional operations must be added to the abstract
data type so that the values of the elements in the list can be obtained sequentially in the
manner in which characters are read from a TEXT file. The abstract type used to represent
Primes is "list of integers with a reading pointer.n The operations of this type are EmptyList,
Append, Head, and Next. EmptyList produces List values. Head and Next are operations that
applied repeatedly both carry List objects back to their integer components in the concrete
world, and map Lists to Lists in the abstract world. Like RESET, Head(Primes,Trial) assigns
Trial the value of the first element in Primes (if Primes is not empty) and the value EndList
otherwise. In addition, Primes is prepared for reading, which we indicate by writing the ele
ments in Prime as

132

www.manaraa.com

<already-read values of Primes> & <to-be-read values of Primes>.

The other operation, Next(Primes,Trial), performs a function like that of the READ statement,
assigning the next value to be read in Primes to Trial and advancing the reading pointer. If no
more values remain to be read from Primes, Next assigns Trial the value EndList.

A representation for list objects and its representation function must be chosen.

TYPE
EltType = EndLisUvfAXINT;
List = RECORD

Values: ARRAY [l..MaxSize) OF EltType;
Size, Current: O .. MaxSize

E~D;

The representation function for List, AList is:

((s,t): t is the same state as s except List(t) =
<L.Values[l), ... ,LValues[L.Current» & <L.Values[L.Current+l), ... ,L.Values[L.Size»
if O<L.Current<L.Size<MaxSize, and t contains no members whose first elements are
L.V;Jues, L.Cur~nt, or L.Size}

Finally implementations are written for each operation. In the interest of space, only the imple
mentation of Head is given. Each implemented operation comes with two comments describing
their function. The users' expectations can be captured by writing comments about the pro
cedure part functions in the abstract state. These comments are labeled "abs:" in the code. Of
course, the concrete procedure themselves are concrete-state mappings, and have part functions
in that world as usual; these are labeled "con:".

PROCEDURE Head(VAR L: List; VAR Result: EltType);
{ abs: (L = < > Result := EndList) I

(L = <Ll, ... ,Li-l> & <Li, ... ,Ln>
L, Result := <Ll> & <L2, ... ,Ln>, Ll)

con: (L.Size > 0 L.Current, Result ;= 1, L.Values[l)) I
(L.Size ::s 0 L.Current, Result := 1, End List) }

BEGI~ {Head}
IF L.Size > 0
THEN BEGIN L.Current := 1; Result := L.Values[I) END
ELSE Result := EndList

END; {Head}

The correspondence between the body of Head and its concrete comments is apparent from the
meaning of the IF statement. We need to demonstrate

Again, tra.ce tables prove to be a useful tool for computing function compositions.

133

www.manaraa.com

AList 0 Headabl

condition L Result

O:5L.C:5 <L.V[I], ... ,L.V[L.C]> &
L.S<MaxSize <L.viL.C+l1, L.V[L.Sl>
<L.V[l], ... ,L.V[L.C]> & End List
<L.V[L.C+l], ... ,L.V[L.S]>
=<>

The condition evaluates to true when

<L.V[I], L.V[L.C]> = <> and <L.V[L.C+l], ... ,L.V[L.S]> = <>

Picking L.S and L.C to be 0 achieves this result. Thus the function is

MaxSize ~ 0 and L.S = 0 and L.C = 0 -+ L, Result := < >, EndList

ALiat 0 Headabs

condition L Result
O:5L.C:5 <L.V[I], ... ,L.V[L.C]> &
L.S<MaxSize <L.VLL.C+ 11, ... ,L.V[L.Sl >
<L.V[I], ... ,L.V[L.C]> &
<L.V[L.C+ I], ... ,L.V[L.S] >
-
<L1 ... ,Li-l> & <Li, ... ,Ln> <Ll> & <L2, ... ,Ln> L1

This condition is true when i~1 (i.e, L.S~L.C~I) and L.Y[I]=L1, ... , L.V[L.SJ=Ln. Thus the
function is

(MaxSize~L.S~L.C~1 -+ L, Result := <Ll> & <L2, ... ,Ln>, Ll

The composition ALiat 0 Head .. bs yields

(MaxSize ~ 0 and L.8 = 0 and L.C = 0 -+ L, Result := <>, End List) I
(MaxSize~L.S~L.C~1 -+ L, Result := <Ll> & <L2, ... ,Lo>, Ll)

Head eon 0 AList

condition L L.C Result

L.S>O 1 L.V[11

09:5 .<L.V[I] ,L.V[L·CJ> &
L.S<MaxSize <L.ViL.C+ll, ... ,L.V[L.Sl>

Thus the function is

134

www.manaraa.com

MaxSize~L.S~1 -- L, Result := <L.V[I]> & <L.V[2j, ... ,LV[L.S]>, L.V[I:

Head eon 0 AList

condition L L.C Result

L.S<O End List

O:5L.C:5 <L.V[Ij, ... ,L.V[L.CJ> &
L.S<MaxSize < L.V[L.C+ 11 , ... ,LVIL.s1 >

Since the condition requires both L.S:50 and L.S~O, it must be the case that L.S=O, L.C=O,
and the list

<L.V[Ij, ... ,L.V[L.CJ> & <L.V[L.C+lj, ... ,L.V[L.S]>

must be empty. Thus the function is

MaxSize ~ 0 and L.S = 0 and L.C = 0 -- L, Result := < >, EndList

The composition Headeon 0 AList yields

(MaxSize~L.S~1 -- L, Result := <LV[I]> & <L.V[2], ... ,L.V[L.S]>, L.V[lJ I
(MaxSize ~ 0 and L.S = 0 and L.C = 0 -- L, Result := < >, EndList)

This composition yields the same results as the previous composition, but on a slightly larger
domain since it places no restriction on the initial value of L.C.

3.3. Testing The Result

Once the design phase is complete, we switch to the development process. In this stage,
abstract data types are tested independently, and design parts are incrementally assembled into
execution form and tested. For example, Design Parts 1 and 1.1 in Section 3.1 would be assem
bled, and later design parts that refine

IsPrime := (for all members P of Primes, (NextP mod P) 'i= 0);

would be replaced by

IsPrime := true;

which permits a development program to be tested (although in this case all odd numbers would
be added to Primes). This development program would be tested with various values of N
(including at least odd and even values).

To test the data abstraction functionally, we should consider the possible logical sequences of
the operations: EmptyList, Append, Head, and Next. For example, to check valid combinations
of operations e might:

135

www.manaraa.com

(1) build a list,

(2) sequence through a list,

(3) go back to the head of the list after partially sequencing through the list (after a Head or
a Next),

(4) append an element to the list while sequencing through it (after a Head or a ~ext),

(5) empty the list after sequencing through or building it.

These operations should be considered with at least three different kinds of list values: an empty
list, a partially full list, and a full list (since we have chosen an array implementation). Some
other combinations of operations are not legal and are not tested. For example. applying the
Next operation to a list without executing the Head operation first will cause an error.

To check that we have covered all cases, we should consider all combinations of operations, not
ing whether they are legal or illegal combinations and whether the combination appears in the
finished program.

Case Operations Legality Used

1 EmptyList;EmptyList legal no
2 EmptyList;Append legal yes
3 EmptyList;Head legal no
4 EmptyList;Next illegal no
5 Append;EmptyList legal no
6 Append;Append legal no
7 Append;Head legal yes
8 Append;Next illegal no
9 Head;EmptyList legal no

10 Head;Append legal no
11 Head;Heail legal no
12 Head;Next legal yes

13 Next;EmptyList legal no
14 Next;Append legal no
15 Next;Head legal yes
16 Next;Next legal yes

To test the data abstraction properly so that it can be used again, we should at least check the
possible combinations of operations listed above on three representative list values: an empty
list, a partially full list, and a full list.

Design, analysis and testing provide a three-pronged approach to assuring confidence in the
correctness and quality of the developing program. The design formalism assures that the pro
gram developed from the functional specification is a correct elaboration of that specification.
The ability to perform a formal or informal analysis based upon that design formalism offers the
programmer and the reviewer the ability to check for consistency and correctness in a sys
tematic way. Incremental testing of the program permits us to check details normally
suppressed in proofs (e.g., range errors), as well as the environmental aspects of executing a
·correct" program (e.g., does the Pascal implementation correspond to its formal definition.

136

www.manaraa.com

which was used during analysis).

4. Experience With The Course

The course requires new ways of thinking even for experienced computer science educators. The
material is deep and quite different from the traditional "first course" in programming. How
ever, the mat.erial is no harder for st.udents than traditional introductory courses in other
scient.ific disciplines such as calculus or physics. We have a strong sense of satisfaction teaching
this course because it formalizes basic ideas of computer science and provides the st.udent with a
solid foundation in the principles of programming.

Because many students learn about computers before they come to the university, they enter
with very different computer backgrounds. Those who know a lot about programming, even in
Pascal, will not be able to skip this course. It is not a course in Pascal programming. The mix
of backgrounds in programming and in mathematics causes student expectations and reactions
to vary widely. Some are disappointed that they are not writing big, realistic programs. They
may think the material is too simple until they are surprised by the real depth in the course.
Others are initially overwhelmed because of their lack of background or intimidated by the pro
gramming knowledge of classmates. There will always be a few good students who have trouble
simply because the course does not live up to their expectations. It is more important than
usual to make it clear early what the course is about and what is expected. This motivation
should be reinforced at regular intervals.

We find it useful to distinguish between useful tub and useful sfrills. Programming based on
the program calculus and mathematical correctness is an unnatural activity that also takes faith
and practice to master. In learning to type, it is natural to look at the keys while typing. We
know that we should learn to type in a systematic way (that is, without looking at the keys)
because it is a better way to type in the long run, even though it is a terrible way to try to type
on the first day. We learn not to do something that looks useful initially, but to begin to learn
useful skills instead. The improvement of mathematical approaches to programming over what
comes naturally can be as dramatic as that of touch typing over hunt-and-peck.

Once they have mastered these ideas, programmers can use the Clean room software develop
ment method [Currit 861. The key components to the method are a mathematically-based
design method, implementl!otion without unit testing by developers, and a statistically-based
testing strategy performed by a third party. This method changes testing and debugging from
program development strategies to quality assurance measures. A study of the development of
an electronic message system by 15 three-person teams helped demonstrate the feasibility of this
approach [Selby 851. All development teams were allowed 3 to 5 test submissions. Cleanroom
developers tended to make all their scheduled deliveries, while the control group members (who
used a more standard method) did not. Clean room-developed products more completely meet
the requirements and had a higher percent of test cases succeed.

5. References

[Currit 861
P.A. Currit, M. Dyer, and H.D. Mills. Certifying the reliability of software. IEEE TroRS.
Soft. Eng 12, 1, (January 1986), 3-11.

137

www.manaraa.com

[Dijkstra 72]
E.W. Dijkstra. Notes on structured programming. In Structured Programming, Academic
Press, New York, (1972), 1-82.

[Dijkstra 76]
E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.,
(1976).

[Floyd 66J
R.W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium in
Applied Ma.thema.tics 19, (J.T. Schwartz ed.), (1967), 19-32.

[Hoare 69]
C.A.R. Hoare. An axiomatic approach to computer programming. Communications of the
ACM 12, 10, (October 1969), 576-580, 583.

[Hoare 71]
C.A.R. Hoare. Proof of correctness of data abstraction. Acta Informatica 1, (1972), 271-
281.

[Hoare 72]
C.A.R. Hoare. Notes on data structuring. In Structured Programming, Academic Press,
New York, (1972), 83-174.

/Mills 721
H.D. Mills. Ma.thematical foundations for structured programming. In Software Produc
tivity, Little, Brown a.nd Company, Boston, Ma.ssachusetts, (1982),115-178.

/Mills 86]
H.D. Mills, V.R. Ba.sili, J.D. Gannon, and R.G. Hamlet. Principles of Computer Program
ming: A Mathematical Approach. Allyn and Bacon, Boston, (1986).

[Naur 66]
P. Naur. Proof of algorithms by general snapshots. BIT 6, (1966), 310-316.

lParnaa 72]
D.L. Parna.s. A technique for software module specifica.tion with examples. Communica
tions of the ACM 15,5, (Ma.y 1972),330-336.

[Selby 85]
R.W. Selby, YR. Ba.sili, a.nd F.T. Baker. Cleanroom softwa.re development: An empirical
eva.luation. University of Ma.ryland, Depa.rtment of Computer Science, Technical Report
TR-1415, (February 1985).

[Wirth 71]
N. Wirth. Program development by stepwise refinement. Communications of the ACM 14,
4, (April 1971), 221-227.

138

www.manaraa.com

A SUPPORT TOOL FOR TEACIDNG
COMPUTERPROG~NG

Marvin V. Zelkowitz, Bonnie Kowalchack,
David Itkin and Laurence Herman

Department or Computer Science
University or Maryland

College Park, Maryland 20742

Abstract

At the University of Maryland, freshmen Computer Science majors are introduced to
the process of computer programming through a new course that emphasizes metho
dology with mathematical formalism and program correctness as fundamental issues.
An mM PC-based environment, called SUPPORT, is being used for this class to
enhance the concepts taught as well as to aid program development. This paper
briefly describes the course, describes the SUPPORT system, and gives some early
data on the use ot this tool in the course.

Keywords: Computer programming; Education; Microprocessor; Pascal; Program
ming environment; Workstation

www.manaraa.com

1. Introduction

The ability to write good programs for a computer is a fundamental concept

taught to Computer Science majors. However this is usually accomplished more as an

art than as a 8cience. An instructor gives the student a series of sample programs,

and the student soon learns (we hope) to emulate the instructor when new programs

need to be written. The instructor supplements this process with a series of heuristics,

concepts like structured programming, modular design, information hiding, and test

plan development. By the end of the course the good students have learned, in a

somewhat informal manner, most of the characteristics of good software design and

development.

More formal concepts like program verification and correctness issues have been

deemed graduate 8chool concepts, and are only talked about in a fuzzy manner at the

introductory level. However, correctness is not an add-on feature - a poorly designed

program cannot be made "reliable" by adding "verification ideas" later. Reliability

must be an early goal, and the student needs to incorporate such ideas ab initio,

much like programs must be designed top down ab initio; one cannot effectively

remove "spaghetti code" gotos and still expect to have an understandable program.

A further need for such formalisms early is to demonstrate to the student (and to

the professional world for that matter) that programming is not easy. While the syn

tax of a given language is easy to understand (e.g., we are talking about FORTRAN,

Pascal and BASIC here, not Ada), the ability to construct a correct program is hard.

This leads to the view held by many that almost anybody can learn computer pro-

140

www.manaraa.com

gramming, yet these same people orten complain about the low quality or the result

ing programs. As stated by McCracken, computer science education is much more

than teaching programming [McCracken].

This problem had been apparent at the University of Maryland in our pre-lgSI

set of graduation requirements for Computer Science majors. Previously students

needed to pass a calculus sequence as a graduation requirement. We found that many

students did adequately in our old freshman programming course, only to flounder

during their senior year in both the freshman level calculus course and our own senior

level Computer Science courses. It was clear that they were not up to the standards

we wished to impose on our graduates.

We haye changed this process by now requiring both calculus and the freshman

programming courses to be corequisites, and are finding that students ha\;ng trouble

with one usually have trouble with the other. This has been an effective way to warn

the student early in his or her college career about potential problems.

Of more importance, we have redesigned the freshman course to more adequately

reflect our \;ews of introducing the programming process. This course emphasizes the

formalism necessary to build correct reliable programs. By the end of the two semes

ter sequence, not only is the student well versed in programming in Pascal, under

stands the operational aspects of top down design, information hiding, modular design

and structured programming, but also has a good introduction to the concept of pro

gram correctness, and program verification and data abstraction.

141

www.manaraa.com

Section 2 of this paper will briefly describe this course, and will emphasize its

programming aspects. In section 3, the SUPPORT Environment for the IBM PC is

described as a companion tool for use in this course. Section 4 will provide some data

on the use of this tool in the course.

2. Computer Science I

The freshman computer science course emphasizes functional correctness as the

means to design computer programs. A program is viewed as a function which

transforms an input data space into an output data space. Each statement is added to

a program with a view of how it transforms that data space. For example, if a while

statement is added, the student is required to consider the invariant of the loop and

the exit conditions from the loop. While it is not necessary to formally verify every

line of code. the idea that each executable statement will transform one data space

into another is pervasive. Students need this structure in order to properly think

about program design. A text has been written to support this concept (Mills 87al and

another paper in this proceedings describes this course in more detail [Mills 87bJ.

For pedagogical reasons, Pascal is divided into three subsets: CF Pascal, D Pas

cal and Pascal. By the end of the two semester sequence students are well versed in

the entire language.

The goal for the first semester is to teach the students to design programs for

mally and algorithmically. A small subset of Pascal, called CF Pascal, is used to

enforce simplicity. This is a highly restricted subset that avoids all "frills" in the

language. Since there are a limited number of ways to express any idea, the major

142

www.manaraa.com

task or the student is the development or an algorithm without the need of consider

ing the myriad or ways of converting a concrete design into executable Pascal code.

CF Pascal is also limited to ideas that can be rormally defined and verified as a means

of expressing the formalisms of the course.

CF Pascal stands for Character File Pascal which represent the only data types

available. All information must be expressed in these types. Concepts like arrays,

integers and boolean variables are not included. (See the Appendix for the Syntax of

CF Pascal.) In addition, the control structures are generally limited to one way of

expressing an idea. Thus CF Pascal has a while statement, but no repeat and for

constructs. Similarly, there are if and procedure statements, but no case and func

tion statements. All procedure parameters are caJl-by-reference.

In addition to simplifying the language and providing a subset of Pascal that

lends itself to program verification, CF Pascal forces the student to think about

modularization and data abstraction early. For example, when numbers are needed,

the student needs to abstract the ideas from the basic character and file data types.

For example, a single digit can be represented as a character variable. An arbitrary

integer can be represented as a file of characters. Students write procedures to incre

ment such numbers, add numbers, compare numbers, etc.

However, most of the programs in this course stay away from such concepts. It is

most informative for the student to use CF Pascal to program non-numerical prob

lems early, rather than viewing the major purpose of programs as simply implement

ing square root routines and other numerical approximation algorithms.

143

www.manaraa.com

In the second semester, D Pascal, or Design Pascal, is taught. This is a more

complete subset that adds additional primitive data types and control structures. It is

closer to a more traditional subset used at other institutions. Finally, by the end of

the second semester, the student is programming in full Pascal, with records, pointers,

and all other features of the language.

3. The SUPPORT Environment

When the freshman course was redesigned according to the above goals, comput

ing facilities consisted of several large mainframe computers accessed via remote ter

minals. Students were taught the various subsets of Pascal and then had to program

their solutions using standard text editors and compilers. This solution had two major

deficiencies: (1) Students needed to learn a great deal about the operating system,

logon procedures, standard text editing and the Pascal compiler before they could

even start their programming activities. This was a great intellectual hurdle to over

come before they entered their first line of text; and (2) Since they were using a stan

dard Pascal compiler, they could accidentally or intentionally access features of Pascal

that were supposedly beyond their knowledge at that point. A system organized

around CF Pascal seemed like a worthwhile addition.

In 1984, the University of Maryland began acquiring a large number of IBM PCs

as part of an IBM Advanced Educational Program grant to the University. One of

the tasks supported by the grant was the development of the SUPPORT Environ

ment as the companion software to use in this first computer science course. The fol

lowing is a brief description of SUPPORT, (cf. [Zelkowitz 85]). The system has been

144

www.manaraa.com

in use since early 1986 and the next section will describe our experiences to date.

SUPPORT is an integrated Pascal development environment for PC-DOS sys

tems. Its major components consist of a syntax directed editor for building Pascal

programs, a Pascal interpreter for executing these programs and a consistent user

interface that communicates to the programmer via a series of windows - horizontal

bands of text that divide the PC's CRT screen. A major goal was the self-sufficiency

of the system; all computing needs are to be handled internally to SUPPORT.

Knowledge of the underlying PC-DOS operating system had to be kept minimal. The

system is implemented in Pascal, and will run on any PC with 256K of memory. In

256K it can be used to develop programs of approximately 500 statements. Since the

system uses whatever memory is available, in a full 640K system, programs of over

3,000 lines can be written.

While SUPPORT was designed as a closed integrated environment, without the

necessity of using any other tools for Pascal program development, it was designed

with an open interface. Thus, commands are available for moving program and data

between the SUPPORT environment and the DOS file system, and hence to other

Pascal processors, PCs, or even other computers.

Using SUPPORT

A student enters the SUPPORT Environment by placing the SUPPORT system

disk in the floppy disk drive, and then typing "SUPPORT". When SUPPORT is ini

tially invoked, the students are communicating with the Program Text window and

the syntax directed editor. This editor only knows about the CF Pascal subset men-

145

www.manaraa.com

tioned previously, thus it is impossible to enter Pascal text outside of the scope of this

first course. In this window, text is entered via a series of function keys (button

responses) to menus (replacing nonterminals on the screen by the right hand side of

productions) or by text which is parsed via an internal LALR parser.

For example, if the cursor (reverse video text) surrounds the statement nontermi

nal, as in:

< .statement. >

and the student wants to insert a while statement, the student can either enter the

corresponding button from the displayed menu or can type in the text:

while <.condition.> do <.statement.>

In either case, the screen will now contain the text:

while <.condition.> do

< .statement. >

The contents of the program window alwaY8 represent a syntactically valid program

(which is stored as a correct parse tree). It is impossible to enter invalid text via this

method. In general, the menu buttons are used to enter the larger constructs like

statements or procedure declarations, and the internal LALR parser is used for

smaller constructs like expressions; however there is no inherent limitation of when

each can be used [Zelkowitz 84).

For the beginning student, this eliminates the frustration of trying to build a

syntactically valid program the first time before receiving any positive reinforcement

via some execution output. Most beginners have trouble with the explicit syntax

needed by most compilers. Since people have good error correction strategies in their

146

www.manaraa.com

heads and can usually understand a program containing a few minor syntax errors, it

is orten hard for students to understand the need for absolutely correct input.

If the text that the student entered is syntactically incorrect, it is placed in a

small window which can be accessed via the internal Character Oriented EDitor

(COED). The student can either retype the invalid line of text or can enter COED to

modify it, have it parsed by the internal parser and then inserted into the program

tree. COED consists of a series of simple cursor commands for adding and deleting

characters and lines of text. It is limited to one screenful of text (about 22 lines), and

is not meant to be a general text editor.

COED is the major tool for modifying program text. The student wraps the cur

sor around the section of code to be modified, pulls this code into the COED window,

modifies it, and exits COED whereupon the parser is invoked.

The use of COED solves one of the problems inherent with syntax directed edit

ing. Since the program must always be represented as a valid syntax tree, it is usually

impossible to make modifications that temporarily upset that correctness. For exam

ple, inserting the begin keyword destroys this balance until the corresponding end

keyword is entered. Via COED, this syntactic balance can be temporarily modified,

but the program text from the COED window will be inserted into the Program Text

window only if it passes correctly through the parser.

Students need to be able to create data files, but in keeping with the goal of

making SUPPORT a total environment, we did not want to teach them an alterna

tive text editor to use. COED can also be used to construct arbitrary files (up to the

147

www.manaraa.com

22 line window size) and save them in the PC-DOS file system. While this is sufficient

for student programs, it is not for a production environment. However, professional

programmers would have no problem going outside of the environment to utilize

another text editor for data preparation.

The use of COED also solves one additional problem with syntax directed edit

ing. With a more strict formalism in creating program text via a series of menus, the

student does not get a thorough knowledge of the Pascal syntax. While a desirable

trait initially, the student will need the ability to create correct programs without the

use of SUPPORT later. With COED the student learns that syntax.

SUPPORT can save any part of the Program Text window to the file system.

This allows for programs to be printed, or to be exported to another system (e.g.,

compile on the PC-DOS Pascal compiler). In addition, the internal parser can process

any PC-DOS file and insert it into the program tree. If the parsed text matches the

nonterminal at the cursor (e.g., <.program.> or <.procedure.» then it will be

added to the Program Text window. This feature can be used to import any exter

nally generated program fragment into the SUPPORT environment. While not impor

tant in the student environment, it is important for effective use of the system in

other applications.

Small sections of code can be moved using the COED window. The code is put in

the window. the cursor is moved in the Program Text window, and then COED is

exited via the internal parser. Larger sections of code can be moved by saving that

section into the file system and rereading it through the parser.

148

www.manaraa.com

Program execution is controlled by a Pascal interpreter. While execution speed is

not crucial, the system has to be perceived as fast enough. Cursor motion is essen

tially instantaneous, and the interpreter executes about 90 statements per second on a

PC. Since SUPPORT resides totally in memory, the lack of hard disks on a PC is no

handicap. The few accesses to the floppy disks to read or write programs or data

take the few seconds that people "expect" them to take.

Since CF Pascal makes heavy use of files, we made sure that file processing Is

efficient - especially on a floppy disk system. IT a program does not explicitly link an

internally declared text file to a PC-DOS file name via the assign statement, as in:

assign(InternalFileName, 'MYDATAJCYZ'} {MYDATAJCYZ is on disk}

then SUPPORT makes the file internal, and implements it as a linked list of records.

Only external program data actually needs to be on disks, and most files execute at

CPU speeds. Typically a student would need only one or two external files for final

output and several internal files.

In one test, a 300 line program that makes heavy use of files was executed with

SUPPORT and with Microsoft's Pascal compiler using an mM PC/AT with hard

disk. Although Microsoft Pascal typically generates code that is well over 100 times

faster than SUPPORT's execution time, the heavy external file use resulted in a 18.67

second execution time for the Microsoft Pascal version, but only a 6.48 second execu

tion time with SUPPORT.

In order to simplify the generation of program output which is normally

displayed on the CRT screen, SUPPORT provides a logging function. All lines writ

ten via write or writeln statements are automatically written to the file

149

www.manaraa.com

SUPPORT.OUT. It is then a simple matter when the student exits from SUPPORT

to rename that file, copy it to another floppy disk or to print it.

Monitoring Execution

SUPPORT also contains a large number of features for interfacing between the

Program Text window and program execution. The Pascal interpreter can be stopped

via a keyboard interrupt. Variable values can be displayed in a Debug window. Prcr

gram execution can also be monitored via the Program Trace window. By watching

the program execute a token at ~ time, the beginner gets a better relationship

between the syntax of the program, the infix notation used in Pascal, and the under

lying postfix of the executing program tree.

At any point when execution halts, the student can interrogate the run time

activation records and view all data in an easily readable format, or can type in any

executable Pascal statement and have it executed within the environment of the

halted program. This provides a dynamic debugging system oriented towards the CF

Pascal language. By halting executing and meandering through the activation

records, the student gets a clearer picture of the activation record concept of prcr

cedure invocation, the effects on local and non-local data declarations, and the effects

of recursive procedures on data storage. All of these are possible with the integrated

environment in SUPPORT, and would be difficult to provide in a more traditional

edit-compile-execute-debug cycle.

Besides providing a total closed environment, SUPPORT also provides features

for allowing students to understand the nature of a Pascal compilation and of the

150

www.manaraa.com

stack-model of Pascal program execution. This is provided via three windows: the

Debug, Trace and Run-time Display windows. The Trace window monitors program

execution while the other two access the program's runtime data structures. Unlike

in the PMS system [Tomek! which has a fixed tiled format for window displays, in

SUPPORT users can open or close windows as needed.

Consider the program in Figure l(a) (taken from [Mills 87al). Note that eliding is

used to hide sections of program text to permit larger segments of a program to be

contained on a single CRT window display. Each line beginning <.proc ... >

represents the text of a separate procedure. If needed, these panned nonterminals can

be opened up to reveal the details of the source code hidden by this placeholder. The

user can also insert comments above each panned nonterminal so that once debugged,

only the specifications to the procedure appear on the screen and not the details (e.g.,

code) of how the procedure was implemented.

In Figure l(b), the program of Figure l(a) is executed with both the Trace and

Debug windows active. The user can move the cursor on to any variable and turn the

monitoring of that variable on. Its name as well as its scope are listed in this window.

Whenever the value of the variable is changed, its new value will be updated in this

window.

The Trace window is used to monitor program execution. As execution proceeds

this window is updated in real time at a rate of about 3 statements per second. Users

can monitor execution flow and halt execution at any time.

151

www.manaraa.com

Execution monitoring is displayed on a token by token basis instead of line trac

ing as in other systems. Rather than simply stating that an assignment statement like

"A := B + C" is being traced, the Trace window will successively indicate by moving

the cursor that the following constructs execute in order:

A:=B+C

B+C

B

C

A

This corresponds to the execution sequence:

Execute assignment statement (A:=B+C)

Compute the right hand side expression (B+C)

Evaluate operand B

Evaluate operand C

Evaluate assignment to A

Also note in Figure l(b) that the banner of the Trace window gives a history of

currently active procedures. This gives the user a dynamic picture of how his stati

cally specified program behaves with respect to procedure invocation and exit, as

explained below.

Languages like Pascal all use the activation record model for data storage. Ass0-

ciated with each active procedure is a block of memory to contain the values for all

the variables declared in that block. As each Dew procedure is invoked (e.g., called), a

152

www.manaraa.com

new activation record is allocated; when the procedure finishes, the activation record

is Creed. In this manner, storage is used more effectively than in ~ost FORTRAN or

BASIC implementations where data storage Cor each subroutine remains allocated Cor

the liCetime oC the program's execution. In Pascal, storage Creed by one activation

record can be used by the next. In general, a stack is used to contain all of these

activation records and is a simple implementation strategy for this data.

The use oC activation records allows for recursive procedures with no increase in

complexity since each invocation of a procedure is simply a new activation record

added to the stack. It does not matter iC that same procedure already exists as an ear

lier (recursive) invocation on the stack.

When execution is halted, the user can actively interrogate these run time activa

tion records of the halted program via the Run-time Display window (Figure l(c)). In

this case, the currently active activation record names are displayed on the window

banner line. Using the -+ and +- keys, the user can move the cursor on top of anyone

of these, and cause the contents of that activation record to be displayed in the win

dow. If there are more variables than will fit in the window, the 1 and ! keys can be

used to scroll up and down through the activation record. Recursive procedures pose

no additional problems for this display.

If .the data item is a simple scalar variable, its value is displayed in the window;

however, iC it is a more complex type (such as an array), then only its type is given.

The user can move the cursor on top of this variable and then zoom into it to open

up its contents. Using the arrow keys, zooming and panning (the inverse oC zooming),

the user can nagivate through the run-time display to acquire an intuitive Ceel of how

153

www.manaraa.com

data is organized and stored during program execution.

Since the activation record structure is available to the debugging system, it is

also .possible to execute statements in the halted environment (Figure l(d)). AJJ.y legal

Pascal statement, often a writeln statement for debugging, can be typed and then

executed. This allows for a powerful debugging tool without the need to learn any

thing other than Pascal.

SUPPORT is initialized by reading in an external grammar description of the

language it processes. This paper described the CF Pascal variant. We also have a

larger subset that includes integer, real, boolean and array type. We haven't done so,

but it would be an easy operation to increase the number of subsets greatly. For

example, you could have a subset with only read and write statements for allowing

students to write their first trivial programs. CF-Pascal could be a second subset,

adding integers a third, adding additional control structures a fourth, etc. The basic

SUPPORT package would not change but the underlying language that was processed

would expand with each new subset. One could have Pascal.chl, Pascal.ch2, ... where

each subset reflected the next chapter in the course text book. This would allow an

instructor to introduce new language features in a controlled manner.

4. Experiences with SUPPORT

SUPPORT was first used in a Computer Science course during the Spring IgS6

semester; approximately 240 students were registered for the course. About 300 stu

dents used SUPPORT during the fall of IgS6. Two surveys were taken during each

semester: one in the third week and the other at the end. Performance in the course

154

www.manaraa.com

was evaluated. During the first semester, the class was divided into SUPPORT users

and mainframe users; during the second semester all students used both systems.

Beginning with the Spring, lQS7 semester, only SUPPORT was used.

For the SUPPORT group, 16 PCs with only floppy disk drives were available, as

well as 50 or more other PC's across the campus. Any computer center user could use

these machines, but demand for them was low and with the small number of SUP

PORT users. access was generally good. Every student was given a copy of the SUP

PORT system disk.

The mainframe users could access the large mainframe from about 200 terminals

scattered across campus as well as through dialup lines. Since the computer center

has several large machines from assorted manufacturers available to a large comput

ing population, access to these terminals is usually difficult. In both cases, students

could use their own PCs or terminals if they had them. About 20% of the students

had their own machines.

As a new product undergoing "beta test" we did have a few problems. In general,

whenever a serious problem surfaced, we had a new generation of SUPPORT

diskettes ready for distribution within a few days. We did go through 4 distributions

during the first semester, but only 1 mid-semester distribution in the second semester.

While we do not believe that any of these problems were serious, redistributions

adversely influenced some of the data collected since they caused the students frustra

tion.

Student Profiles

Our initial survey was used to determine the backgrounds and goals for each sec-

155

www.manaraa.com

tion. The population that we measured is detailed in Figure 2. In general, the course

experiences about a 50% drop in enrollment during the semester, with drop rates ot

50% and 43% tor these semesters being comparable to previous classes. (In many

cases, some students give up and do not even withdraw trom classes, so, we consider

only those with passing grades, not total grades issued.)

We also asked each student what his or her tuture career goals would be. Their

responses are given by the chart in Figure 3. The low percentages tor both Ph.D. and

careers in teaching certainly are indicative of the current problems that colleges are

having in recruiting adequate taculty.

Figure 4 shows that the background of the students in both semesters were quite

similar. For both semesters, between 73% and 82% of the students were taking their

first university Computer Science course. The percentage repeating the course was

about 10% in all sections. Over half the students had programming courses previ

ously in high school while a comparable one quarter in each section had never pro

grammed before. As expected, since we allowed students to switch sections during

semester 1, more than half of the SUPPORT section preferred to use a PC for their

programming while a majority of the mainframe section preferred to use the larger

computer. We assume that the other 40% in each section either had schedule

conflicts which prevented them from switching to the time period of the other section

or else didn't care which computer system they used. Finally, and not unexpectedly,

over half of the SUPPORT section already had their own computer while less than

half of the maintrame section had one. While only 14% ot the first semester and 18%

156

www.manaraa.com

of the second semester class had mM PCs or PC-compatibles, the fact that half the

students had experience with some machine and the general abllity to edit and com

pile programs did affect the later ratings.

Student Evaluations

Most of our evaluation data was collected by the final subjective survey Corm.

While not objective, it does indicate trends which we intend to study more fully dur

ing the coming semester.

Students were asked to estimate the number of hours spent on all class activities

each week. While these numbers varied from 0 hours (probably) to 40 hours

(unlikely), both sections of semester 1 had similar averages of around 16 hours per

week; meanwhile, the average was approximately 9 hours per week in semester 2 (Fig

ure 5). Figure 5 also presents the percentage of time devoted to different computer

tasks and are remarkably similar across all groups in both semesters. The difference.

between the 16 and 9 hours per week of effort between semesters is probably due to

different instructors teaching the course. A single person taught all sections of each

course in a given semester.

In evaluating the SUPPORT section of semester 1, we observed a significant

difference among the students who have their own computers (hence having greater

programming experience) and those that did not. In the figures that Collow. we divide

the SUPPORT data according to the 15 respondents that owned computers and the

13 that did not.

157

www.manaraa.com

During semester 1, the average time spent on eourse activities for all students

was 16.4 hours, and 16.1 hours for the mainframe group, and it varied between 14.3

hours ror the non-computer-owner SUPPORT group and lQ.2 ror the computer-owner

SUPPORT group. Since both groups spent about the same percentage or time on

computer activities (68% and 6Q%) this translates into 12.g hours ror the PC owners

and Q.7 hours for the non-PC group. It is our guess that since the PC owners "liked"

having machines, they used them more. The mainrrame group spent 61% or time on

the computer, or g.8 hours, similar to the non-PC owner SUPPORT group.

In looking at the percentage or time devoted to different computer activities, all

groups seemed comparable. Each spent about 25% or time thinking about their pro

grams, rather than editing or designing their solutions. However, the SUPPORT

group spent a greater time at the terminal (about 10%) than the mainframe group

(about 6%). One hypothesis for this is that PC access was easy while mainframe ter

minal access - since the terminals could be used by any campus computer user - was

difficult. Students staring at a listing were rrowned upon by the queue behind them.

Some or the data on terminal access, which is presented later, seem to support this

view.

We asked all students to rate the computer system they used according to a

series or criteria, and the results are presented in Figure 6. Each item was rated rrom

1 (very poor) to & (very good). In general the mainrrame usage came out better than

the SUPPORT usage, although when the microcomputer owners are filtered out rrom

this group, SUPPORT rared almost as well as the mainrrame group.

158

www.manaraa.com

Students rated the mainframe higher with respect to response time of the system,

text editing capabilities, complexity of the system, and ease of use. SUPPORT was

rated higher for debugging capabilities and availability of terminals to use. Both were

comparable. with the mainframe group slightly higher, on program execution time.

One clear effect of these ratings can be caned technological inertia. The micro

computer owners had a definite idea of how computers should operate, and the seem

ing restrictions source on code generation via a syntax directed editor upset them

more than students without such a background.

This has been observed before. In the early 1970's, the attitude was: Why use

structured programming when gotos are good enough? Today, the view is: Why

learn Pascal when FORTRAN is good enough? In each case, the underlying technol

ogy must be greatly superior or it will not be adopted even if marginally better than

its predecessor. This resistance has been reported by others who presented syntax

editing to professional programmers.

The final rating in Figure 6 was a general satisfaction of the system they used. In

this case the mainframe was preferred over the PC, although less so for the group

that did not own a computer. One interesting anecdote: during semester 2. while stu

dents seemed to prefer the mainframe system, those that used SUPPORT first during

the semester had higher grades on the mid-term examination [Chin].

On the final survey, we asked the students for comments on how to improve the

system that they used. For the mainframe group, there was probably an equal

number that commented on either the complexity or ease of use of the mainframe

159

www.manaraa.com

text editor; you cannot please everyone. Since people tend to comment on the feature

that is their chief problem, about half of the students in the mainframe group com

plained about the lack of terminal access or the large number of inoperative termi

nals.

For the SUPPORT group, while a few had comments about the restrictions

imposed on editing programs, most were concerned about the unreliability of the sys

tem early in the first semester. This is obviously of concern to us, and is an issue that

we believe has been rectified. Meanwhile, during the second semester, there were

more comments about the restrictions of syntax directed editing. Several did com

ment that the diagnostic tools were extremely useful in program development.

The results provide useful information and insight on how to proceed next. For

one thing, the SUPPORT ratings were hurt by two events:

(1) The few bugs in the system lowered overall confidence in SUPPORT.

Although they were repaired quickly, the lack of absolute reliability removed

the trust necessary in a computer system.

(2) In semester 1, the final program overloaded the capacity of the machine for

many students. SUPPORT can handle about 500 statements in 256K, and this

program grew to over 700 statements in some cases. This was fixed by

increasing memory for each machine to at least 512K.

While these problems hurt the SUPPORT ratings, it is also important to note

that SUPPORT fared poorer among those students with significant programming

experience. Syntax editing has received a mixed reception among professional pro-

160

www.manaraa.com

grammel'S, and most likely, technological inertia is causing this resistence. We believe

that by extending the editing capabilities of a syntax directed editor in order to han

dle code modification better, the system will be viewed as more productive to existing

programmers.

As an overall evaluation, we believe that for the first year we have been fairly

successful in using a syntax directed editor in our Computer Science I course.

Although the mainframe was the preferred system, among users with less of a com

puter background SUPPORT fared almost as well. Based upon this experience, we

believe that we have a much more reliable product and have added some necessary

features to enhance the usefulness of the tool.

Students seemed pleased with the interactive debugging capabilities of a system

like SUPPORT over traditional software development paradigms. It is our expecta

tion that with a reliable product, SUPPORT will be rated at least as high as the

mainframe system. We believe that we have achieved a good mix between traditional

screen-oriented text editing and the newer syntax-directed paradigm in an integrated

environment. A more complex question is the acceptance of syntax directed editing

among those with previous computer experience. The answer to this is not yet clear.

6. Acknowledgements

This work was partially supported by Air Force Office of Scientific Research

grant F49620-85-K-008 to the University of Maryland. Computer resources were pro

vided by the IBM AEP grant to the University of Maryland. In addition we would

like to acknowledge the contributions of others who have contributed to this project:

161

www.manaraa.com

Jennifer Drapkin, Gordon Lyon, and Michael Maggio. We also would like to thank

the students in CMSC 112 at the University of Maryland during the Spring and Fall

1986 semesters for their help in testing this system.

6. References

[McCracken] McCracken, D., Viewpoint, Communications 0/ the ACM 30, 1, January,
1987, pp. 3-5.

[Chin] Chin J., Private communication (paper in progress).

[Mills 87a] Mills H., et al. Principles 0/ Computer Programming: A Mathematical
Approach, Allyn Bacon, 1987.

[Mills 87bj Mills H., et aI., A first course in computer science: mathematical principles
for software engineering, (this proceedings).

[Tomek] Tomek I. and T. Muldner, Learning Pascal with the aid of a compiler, Per
spectives in Computing 6, No.1 (Spring, 1986) pp. 22-37.

[Zelkowitz84] Zelkowitz M. V., A small contribution to editing with a syntax directed
editor, Ac\f SIGSOFT Symposium on Practical Software Development Environ
ments, Pittsburgh PA, April, 1984, pp. 1-6.

[Zelkowitz85] Zelkowitz M. V., et. al., The engineering of an environment on small
machines, IEEE International Conference on Computer Workstations, San Jose, CA,
November, 1985.

162

www.manaraa.com

7. Appendix - OF Pascal Syntax

<program>
< pgmblock >
<decs>
< declst >
<dec\>
< proc >
< plst >
<procs>
< paramlist >
<varparam>
< iddecllist >
<parmlist>
< procblock >
<block>
<more stmts>
<stmt>

<if>
<thenprt>
<while>
<call>
<more exprs>
<I/O exprs>
<:=>
<null>
< iduselist >
<expr>
< condition>

<and/or/not>
<and>
<or>
<not>
<equal>
<grthn>
< Isthn >
<greq>
<Iseq>
<noteq>
<char>

::= program id (input, output); <pgmblock>.
::= <decs> <procblock> I <procblock>
::= var <declst>
::= <dec\> <declst> I <declst>
::= <iddecllist> : <type>;
::= procedure id <plst> ;
::= <paramlist> ; <pgmblock> I; <pgmblock>
::= <proc> <procs> I <proc>
::= (<parmlist>)
::= var <iddecllist> : <type>
::= id ,<iddecllist> I id
::= <varparam> ; <parmlist> I <varparam>
::= <procs> <block> I <block>
::= begin <more stmts> end
::= <stmt> ; <more stmts> I <stmt>
::= <block> I <if> I <while> I <call> I <:=>
I <I/O stmts> I <null>
::= if <condition> then <thenprt>
::= <stmt> else <stmt> I <stmt>
::= while <condition> do <stmt>
::= id (<more exprs>) I <id>
::= <expr> , <more exprs> I <expr>
::= <expr> , <I/O exprs> I <expr>
::= <id> := <expr>

::= id ,<iduselist> I id
::= <id> I <string>
::= <and/or/not> I <equal> I <grthn> I <Isthn>
I <greq> I <Iseq> I <noteq> I <eor> I <eoln> I (<condition>)
::= <not> I <or> I <not>
::= (<condition>) and <and>
::= (<condition>) or <or>
::= not <condition>
::= (<expr> = <expr>)
::= (<expr> > <expr>)
::= (<expr> < <expr>)
::= (<expr> >= <expr>)
::= (<expr> <= <expr>)
::= (<expr> < > <expr>)
::= char

163

www.manaraa.com

<type>
<string>
<text>
<id>
<I/O stmts>

<read>
<readln>
<write>
<writeln>
<assign>
<reset>
<rewrite>
<eor>
<eoln>

::== <char> I <text>
::== string
::== text
::== id
::== <read> I <readln> I <write> I <writeln>
I <assign> I <reset> I <rewrite>
::== read (<iduselist>)
::== readln (<iduselist>) I readln
::== write (<I/O exprs>)
::== writeln (<I/O exprs>) I writeln
::== assign (<more exprs>)
::== reset (<id>)
::== rewrite (<id>)
::== eor (<id>) I eor
::== eoln (<id>) I eoln

164

www.manaraa.com

Figure 1a. Sample Program to Execute

- --------------- ------------ -------------------------progru estRell (input, output): { TestReIIOve }<. decs. . .. >
< .proc. CopyToEol ... >
< • proc . EllptyQ ... >

.,.".
< .proc. AddQ ••. >
<.proc. OelQ ... >
<.proc. HeadQ ... >
<.proc. WriteQ ... >
{TestReIIOve }<.proc. ~lanks ... >

beg1n
El!IptyQ:
write();
while not(eof) do

begin
while not(eoln) do

begin
read(Ch);
write(Ch);
AddQ(Ch)

end'
read(Ch);

Figure lb. Use of Variable and Statement Trace Windows

]-Ch-
." .. " ... ,"':", ... -Switch- 1

[RemoveExtr]-LineEnda

--------------------- -----------------------------------"." ..• ".)
end'

read(Ch);
if not(eof) then begin

write(Ch):

'1.,,,~ ftdiCh) ---
***** 1: Start Execution

165

www.manaraa.com

i
c 32

i « ...
c
GI
~ :.

o

Figure 2. Population surveyed

Semester 1 Semester 2
SUPPORT Mainframe All All

Section Section
Registered 85 151 236 307
Survey 1 59 117 176 226
Survey 2 28 61 89 145
Received Grades 57 110 167 248
Non-tailing Grades 40 78 118 174
% Drop 53 48 50 43

Figure 3. Career Goals tor Students

BS MS PhD No CS Bus Res Teach No CS

Education and Career Goals

166

www.manaraa.com

Fir;ure 4. Backr;round of students

Semester 1 Semester 2
SUPPORT Mainframe All All

First university eomputer course (%) 73 74 73 82
Took eourse previously (%) 10 13 12 9
Hir;h school programming (%) 53 63 59 55
Never used computer (%) 24 27 26 24
Prefer current system (%) 60 58 59 ...
Own microeomputer(%) 56 45 49 51

-Not applicable to Semester 2

Figure 5. Effort involved in programming

Semester 1 Semester 2
SUPPORT SUPPORT Mainframe All All

own PC no PC
Population 15 13 61 89 145
Hours/week 19.2 14.3 16.1 16.4 9.0
% Programming 68 69 61 63 52
% Design 38 32 35 35 36
% Editing 18 12 18 17 15
% Execution 20 32 23 24 24
% Thinking at terminal 9 11 6 7 8
% Thinking Not logged in 13 15 18 16 15

Figure 6. Evaluation of systems (l=poor, 5=good)

Semester 1 Semester 2
SUPPORT SUPPORT Mainframe SUPPORT Mainframe

own PC no PC
Response time 3.2 3.5 4.1 3.3 3.5
Text editing 3.7 3.3 3.8 2.7 3.7
Debugging tools 3.0 3.8 3.1 3.0 2.9
Execution time 3.4 3.5 3.7 3.5 3.7
Complexity 3.0 3.2 3.6 3.0 3.5
Ease of use 2.9 3.1 3.7 2.8 3.4
Availability 3.3 3.9 2.8 3.0 2.9
Overall satisfaction 2.8 3.2 4.0 2.6 3.4

167

www.manaraa.com

Stalking the Typical Undergraduate Software Engineering Course:

Results from a Survey

Laura Marie Leventhal and Barbee T. Mynatt

Computer Science Department

Bowling Green State University

ABSI'RACl'

A survey of undergraduate software engineering courses was conducted. The survey

covered the issues of course level, course content, course organization, project characteristics and

department demographics. The descriptive statistics show that the typical course focuses on the

software development life cycle and includes a project intended for actual use. The project is carried

out by teams of students, with student leaders. A factor analysis disclosed that three different sons of

courses are currently being offered. The most predominant course is the Later-Life-Cycle course,

which focuses on the later stages of the software life cycle. Detailed design, coding, testing and

maintenance receive in-depth coverage in this style of course, and the students' grades are heavily

dependent upon the project The Early-Life-Cycle course emphasizes requirements analysis,

specification and system design. Written repons are an imponant component of this course, and the

project is again a large portion of the students' grades. The third style of course is the

Theoretical-Issues course. Software metrics, project management and legal and ethical issues are

covered. The students are upper level, and use journal articles as a source of materials. The issues of

suitable textbooks and sources of materials and training for teaching user-interface design surfaced as

problem areas.

www.manaraa.com

L INTRODUcnON

XYZU has a well-established computer science program; the department has an
excellent academic reputation as well as an outstanding placement record. Several
recent computer science graduates from XYZU have suggested that the program
would be strengthened by the inclusion of undergraduate courses in software
engineering. Industrial recruiters have echoed the idea. Dr. Q. has a strong
background in operating systems software and has enthusiastically volunteered to
develop the new software engineering curriculum. Like many computer science
faculty members, Dr. Q. is a relative novice in the area of software engineering. Dr.
Q. begins to address the questions of course staffing, course content, computer
facilities, and student characteristics.

In a traditional computer science course such as introductory programming, a review of

popular textbooks and accredidation guidelines quickly reveals common trends in course content and

logistics. Unfortunately for Dr. Q., the development of a software engineering curriculum is more

problematic. Great variety exists in textbook content and organization. Dr. Q. is uncertain of her

choices; she is even more unsure of which parameters are relevant. In short, Dr. Q. is having a hard

time finding a description of a "typical" course in software engineering, let alone developing a course

tailored for the computer science students at XYZU.

Although several reports of undergraduate software engineering curricula have appeared in the

educational literature of computer science, the majority of these reports described one particular

software engineering course. They do not provide guidelines for a generalized curriculum in software

engineering ([1] and [2] are possible exceptions). However, there are several issues that are common

among these reports of specific courses:

1. Placement of software engineering courses in an undergraduate computer science program

2. Topics included in software engineering course(s)

3. Organization of software engineering course(s)

4. Role of and characteristics of a project component

Software Engineering in 1M Computer Science Program

When and how should computer science students be exposed to software engineering

169

www.manaraa.com

materials? Shooman [3] suggested at least three alternatives: a dedicated course, incorporation of

software engineering techniques into other courses, and reliance on on-the-job experience in

cooperative education settings. Within the dedicated course option, he described several alternatives.

Software engineering techniques could appear in freshman level courses before the students learn "bad

habits", or the material could appear in junior and senior level courses when the students are mature

enough to appreciate the benefits of software engineering. An issue implicit in the question of course

level is that of appropriate prerequisites. Should the students be beyond a significant program

milestone (e.g, completion of a data structures course)?

Carver [4] described a course specifically designed for junior and senior computer science

students and listed data structures as a prerequisite. Other courses targeted for juniors or seniors were

reported in Mazlack [5] and Shooman [3]. In contrast, Lapalme and Lamy [6] proposed a course for

freshmen.

Courre Content

Collofello and Woodfield [7] have suggested that one of the difficulties in teaching software

engineering is the vastness of the subject area, particularly for a one-semester course. Shooman [3]

listed eight design topics and seven management topics as potential course items. The list included

such diverse items as design topics, programming style, reliability estimates, and software quality

control. Typically. textbooks highlight stages of the software lifecycle (e.g., [8] and [9]). However,

Jensen and Tonies [10] included legal issues as a chapter in their software engineering text.

Course OrgonizaJion

Course organization refers to issues of course materials, student course requirements, faculty

Iequirements, and computer facilities. Shooman [3] cited staffing and facilities as primary difficulties

in the construction of a software engineering course. Bickerstaff [11] described an ongoing lack of an

adequate textbook to meet the particular needs of his curriculum. Henry [12] listed the reading

170

www.manaraa.com

materials for her course. She had primarily selected journal articles rather than a single software

engineering textbook.

Materials and resources may include more than textbooks and journals. For example,

Shooman [3] and Waguespack and Haas [13] described extensive and cost-effective programmers'

workbenches. Both of these facilities were specifically designed to support software engineering

education.

Project

By far the most common issue that is addressed in the software engineering education

literature involves course projects. Among the existing articles there is little disagreement on the

benefits of a project component. There is, however, variety in the characteristics of the project

element. For example, Carver [4] described two courses; one included a single project, completed by

all of the students, and one included multiple projects. In the multiple-project model, groups of

different students worked on different projects. In her subjective comparison of the two approaches,

she found that the time component for the end user was most problematic in the single project case,

while selecting equivalent projects was the most difficult aspect in the multiple-project approach.

Several other articles have also noted the difficulty in project selection ([11], [14], [4] and

[15]). Woodfield, Collofello and Collofello [15] suggested that a project which is too large to finish

has a negative effect on student motivation, while a project which is too small allows the students to

use ad hoc techniques rather than software engineering methods. An additional issue in project

selection is the type of project. Is the project a "toy" or will it really be used? In Henry's course [12],

the students selected their own game to implement. This is in sharp contrast to Bickerstaffs [11] use

of real projects. In the course he described, the students not only implemented systems for use, but

also interacted directly with the end users.

A third major theme which arises from the descriptions of projects concerns team

organization, management, and evaluation of team members ([7], [19], [15] and [12]). Typical

problems which have been reported include workable team sizes, team formation and team evaluation.

171

www.manaraa.com

B.MErHOOOLOGY

The case studies suggest both trends and recurrent problems in software engineering

education. However, the resourceful Dr. Q., and others in similar positions, are in search of a

description of a model or "typical" course. It is not clear that the case study literature is a

representative picture.

In order to provide a more reliable and complete description of software engineering courses

currently offered, we recently conducted a survey of undergraduate programs in computer science.

Two-hundred-forty programs which mininally grant a bachelor's degree in computer science were

randomly selected to participate in the survey. The programs were selected from the approximately

820 programs in the United States and Canada listed in the ACM 1984 Administrative Directory [16].

The surveys were sent by mail and a self-addressed return envelope was included in the package.

The survey was divided into five parts. (Appendix A contains a facsimile of the

questionnaire.) The first part consisted of open-ended demographic questions, including questions on

the numbers of undergraduate majors and minors, the numbers of full-time and part-time graduate

students, the school calendar, and the name of a contact person in the program. Four additional

sections addressed the the themes which emerge from the case study literature reveiwed above: course

level, course content, course organization and project components. For each question in these

sections the respondent was asked to provide a rating. The rating was on a four point scale, from "not

at all true" to "very characteristic".

n. RESULTS

Twenty-five percent of the surveys were returned in time to be included in the analyses.

While the use of surveys in software engineering practice is not unknown, it has not been widely used

in the educational arena (e.g., [17]). In fact, a common criticism of mailed surveys in the more

general area of citizen feedback is that they are biased because only the most highly-motivated

participants respond. The response rate is generally low, occasionally falling below ten percent [18).

172

www.manaraa.com

Our relatively high response suggests that the population from which we drew our sample is generally

highly-motivated and interested in software engineering education. Consequently, we believe that

there was less likelihood of bias in our results than in the typical situation.

Demographics

The frrst part of the survey included a series of items to elicit a description of the respondent's

department and program. The respondent was asked to identify his or her department and school.

Although eleven different department titles were specified, these were collapsed into the four different

catagories shown in Table 1. The largest category was Computer Science, which was indicated by 57

percent of the respondents. Twenty-one percent were from Mathematics departments or combined

Mathematics and Computer Science. Thirteen percent were from departments that included the word

"Information" in their titles (e.g., Computer Information Science or Information and Computer

Science) and the remaining eight percent were from Electrical Engineering and Computer Science

departments.

Thirteen uniques responses were given for school affiliation. These were collapsed into the

five categories indicated in Table 2. Thirty percent of the respondents' departments were in Liberal

Arts or Arts and Sciences colleges. Thirty percent were from the College of Science or a college with

Science as the primary word (e.g., Science, Technology and Health or Applied Science). Fourteen

percent were from Engineering colleges, and eight percent were from Business colleges. Seventeen

percent did not respond, or indicated in some way that the question was not applicable in their case.

The distribution of faculty size per department is given in Table 3. As the table shows, the

majority of respondents were from smaller departments - 50 percent were from departments of ten or

fewer faculty. The mean number of faculty is 15.8 with range of 2 to 84.

The number of majors and minors per department is shown in Figure 1. The mean number of

majors is 288 with range of 0 to 1200. Forty-five percent of the schools surveyed do not have

minors, and 45 percent have less than 100 minors. Of the schools that do have minors, the mean

number of students is 96. Clearly, a computer science minor is not widely offered among the schools

173

www.manaraa.com

responding, nor is a minor widely taken when it is offered.

Fifty-nine percent of the responding schools offer Master's degrees and 37 percent have

doctoral programs. The number of full-time and part-time graduate students per department is shown

in Figure 2. The mean is 76 full-time graduate students, and 115 part-time. Nationally, 54 percent of

all schools offering at least a bachelor's degree in computer science offer a master's degree as well,

and 29 percent offer doctoral degrees in computer science. Thus our sample seems quite

representative of the population.

Finally, Table 4 shows the number of software engineering courses offered. Currently, 33

percent of the schools do not offer a course in software engineering. Of those offering a software

engineering course, the majority (63 percent) offer only one course.

In summary, it appears that the typical or modal respondent to the questionnaire is from a

Computer Science department in an Arts and Sciences or a Sciences college. Their department has

fewer than ten faculty members, has 288 majors, has fewer than 100 minors, and offers a Master's

degree. Furthermore, they offer one course in software engineering to their undergraduates.

The next four sections present the findings concerning course descriptions, course content,

course organization and project characteristics. The course description section includes course title,

level, prerequisites and effectiveness responses. The section on course content examines the subject

matter of the courses currently being offered. Issues concerning demands on students, sources of

materials, and staffing are described in the course organization section. Characteristics of the project

portion of the courses are reported in the last section.

Course Description

A total of 59 software engineering courses were described in the questioMaires returned.

There were 31 different titles using a wide variety of terms given for these courses. The most

frequently used title was Software Engineering (37 percent) and 19 percent of the titles referred to

different stages in the software lifecycle or to subject areas in software engineering. The complete list

of titles is given in Appendix B. The variability in the titles and the fact that some of the titles give no

174

www.manaraa.com

indication that traditional software engineering techniques are being covered, indicates the newness of

the courses in the computer science curriculum and the lack of concensus concerning both the courses'

place in the curriculum and the courses' content.

A breakdown of the reported courses by student level showed seven percent are intended for

freshmen, ten percent for sophomores, 47 percent for juniors and 37 percent for seniors. Sixty-eight

percent of the courses are for three hours of credit Twenty-five percent of the courses are for four

hours of credit. There is one case (1.7 percent) for each of the other categories: one, two, five and six

hours of credit. The split between three and four hours of credit may be an indication of the different

academic calendars in use. Seventy-four percent of the schools responding are on semesters or

trimesters. The remainder are on the quarter system.

Figure 3 shows the percent of software engineering courses requiring different numbers of
J

prerequisite courses. There is large variability in the number of prerequisites, although, not

surprisingly, every course has at least one prerequisite. Although some of the variability can probably

be attributed to the calendar differences, much of it is no doubt due to where the course is put in the

curriculum. While some departments may feel the concepts are important introductory material, others

may feel that students need a wide variety of computer science experience before they can understand

the role of software engineering and apply its precepts. Eighty percent require a data structures course

as one of the prerequisites.

Overall, 61 percent rated their courses as highly effective in educating students. Thirty-six

percent felt the courses were moderately effective, and three percent felt the courses were low in

effectiveness.

Course Content

In the Course Content section of the questionnaire, respondents were asked to rate the

importance of 10 different topics to their software engineering courses. The topics included:

Requirements Analysis and Specification, System (Preliminary) Design, Detailed Design, Coding and

Programming Practice, Testing, Software Metrics, Project Management, User Interface Design,

175

www.manaraa.com

System Maintenance and Modifications, and Legal and Ethical Issues. Figure 4 shows the percent of

courses which included the queried topics, along with a rating of the amount of coverage the topic

received in the course. Each bar in Figure 4 represents the total percent of courses which include the

associated topic. The bar is subdivided into three segments. The darkest segment represents the

proportion of respondents who rated the topic as receiving in-depth coverage. The middle,

moderately-shaded segment represents the proportion who rate the topic as receiving moderate

coverage, and the rightmost, lightly-shaded segment represents limited coverage.

It is clear from Figure 4 that, as a whole, the five topics related to the software development

life cycle (Requirements, System Design, Detailed Design, Coding and Testing) are covered most

frequently and receive much more in-depth and moderate coverage than the other topics listed. Of the

remaining topics, User Interface Design receives the most frequent coverage. In fact, 25.5 percent of

the courses contain in-depth coverage of this topic. This fmding is surprising, because the majority of

available software engineering texts do not include chapters on user interface design. The least

frequently covered topic of those listed was Legal and Ethical Issues.

Course OrganizalWn

In the Course Organization part of the questionnaire, respondents indicated how well each of a

series of statements described their courses. The statements dealt with course materials, organization

and staffmg. The exact statements were:

Textbooks are the primary source of materials

Journal articles are the primary source of materials

Students complete written reports

Students give oral reports

Students take exams

The reading load for the course is heavy

Staffmg the course is a problem

Obtaining suitable hardware is a problem

176

www.manaraa.com

Obtaining suitable software is a problem

Each statement was rated as being not at all true (never occurs), somewhat characteristic (rarely

occurs), moderately characteristic (frequently occurs), or very characteristic (occurs very often).

Figure 5 shows the results from the Course Organization portion of the questionnaire. The

different course aspects, corresponding to the statements presented, are listed on the y-axis. Each bar

represents the total proportion of courses which were characterized by the corresponding aspect. The

bar is divided into segments. The leftmost, dark segment represents the percent of respondents who

felt the aspect occurred often. The middle, moderately-shaded segment represents the percent who felt

the aspect occurred frequently, and the rightmost,lightly-shaded segment represents the rarely

occuring responses.

In examining the results for the written materials used in the courses, it is clear that the

majority of the courses do not rely heavily on published materials. Thirty-two percent state that

textbooks are very often their primary source of materials, while 10 percent rate usage of journal

articles highly. On the other hand, 29 percent use textbooks rarely or not at all as a source of

materials, and 71 use journal articles rarely or not at all. This result is probably due to two primary

factors - the project-oriented nature of many of the courses (see below), and the lack of textbooks

suitable for the course as it is taught.

Four different aspects listed in Figure 5 represent demands on the students. These are:

requiring written reports, requiring oral reports, exams and heavy reading loads. In contrast to typical

computer science courses, written reports were most frequent cited as characteristic of the courses, and

were cited by 67 percent as being very characteristic. Again, this outcome is probably related to the

project-oriented nature of the course. Exams are cited as very characteristic by 64 percent. Oral

reports are also quite common (60 percent cited them as occuring very often or frequently). Heavy

reading loads were least emphasized (18 cited a heavy reading load as very often). Nonetheless, a

large proportion, 54 percent, frequently have a heavy reading load.

It is also evident from Figure 5 that staffmg software engineering courses is a problem.

Fifteen percent of the respondents indicated that staffmg is very often a problem, while 31 percent

177

www.manaraa.com

replied that staffmg is frequently a problem. Obtaining suitable software is also a problem in many

cases, with 21 percent finding it a problem very often, and 21 percent frequently finding it a problem.

Hardware is less of a problem. Only 25 percent have a problem obtaining suitable hardware very

often or frequently. Seventy-five percent rarely or never have a problem obtaining hardware.

ProjectC01npOlUmJ

Nmety-five percent of the schools that offered software engineering courses include a project

component in at least one of their courses. (Note that 62 percent of the schools offering software

engineering courses offer only one course.) Figure 6 presents a profile of some of the characteristics

of these projects. For 40 percent of the respondents, the project is very often or frequently a toy

project By implication, in 60 percent of the cases the project is intended for actual use. However,

that does not mean the project involves users from outside. In 72 percent of the cases, the user is very

often or frequently the instructor. Classes typically tackle several projects, as 62 percent rarely or

never have the entire class work on the same project

The most dominant trend among the project characteristics is the use of teams. Nmety-eight

percent use teams at least some of the time and 90 percent use them very often or frequently. The

second most dominant trend - the use of student leaders - completes the picture of teams composed of

and lead by students. Eighty-five percent use student leaders very often or frequently.

The suggestion that the project is a major focus of the typical software engineering course is

highlighted by the large proportion (58 percent) who said that the project counts for 40 percent or more

of the student's course grade. An additional 14 percent say the project frequently accounts for at least

40 percent of the grade. Finally, in most cases the instructor is entirely responsible for grading the

projects, as only 39 percent report that the students help determine the project grades.

N.~CTIONOFCOurumPRO~ESUmNG

FACI'OR ANALYSIS MODELING

The descriptive statistics which have been presented tell a great deal about the undergraduate

178

www.manaraa.com

courses reponed in the current survey. However, the analysis of these data is potentially incomplete

without consideration of what, if any, underlying regularities exist in the data. Can the relatively large

number of responses for each course be reduced into some small number of recurring patterns?

Factor analysis refers to a family of statistical techniques which are widely used in behavioral

research to extract underlying categories or dimensions out of a large data set In general, factor

analysis consists of three steps: generation of an interrelation matrix, extraction of initial factors, and

rotation to a final factor structure. In the fIrst step, the interrelationships among variables or

individuals, expressed typically as correlations or covariances, are generated pairwise. From the

resulting mamx of interrelationships, a set of initial factors is extracted. The initial factors may

incorporate a priori assumptions about underlying regularities. Each initial factor describes a linear

combination of the original variables or individuals. The initial factors are then rotated to a final

solution. The fInal solution forms an n-dimensional structure. Each dimension typically contains one

or more of the original variables or individuals. Category membership is determined by loadings of

the original variables or individuals and the factors. The variables with strong loadings are considered

to be category members; the final rotation highlights high factor loadings. The original variables or

individuals which are grouped in the same dimension are presumed to be thematically similar ([19] and

[20]).

In the current analysis, each of the 59 reported courses was considered as a separate data

point. A matrix of correlations between all pairwise combinations of course description items

(Requirements Analysis and SpecifIcation, System Design, Detailed Design, Coding Practice, Testing,

Software Memcs, User Interface, System Maintenance and Modiflcation, Legal and Ethical Issues)

was generated. The initial factors were extracted using a principal components factor analysis. No a

priori assumptions about underlying structure were required for this technique. A varimax rotation

was performed on the initial factors. This rotation technique produces a set of orthogonal, or

uncorrelated, factors.

Course Dimensions

Three course topic dimensions emerged from the factor analysis of the course content

179

www.manaraa.com

variables. Appendix C contains graphical descriptions of the factor structure.

lAter-life -Cycle Course: The course content issues of Detailed Design, Coding Practice,

Testing, User Interface, and System Maintenance and Modification, combined, formed the first

emergent dimension of the final factor structure. The variables of Coding Practice, Testing and

System Maintenance and Modification, combined, were loaded the most heavily on this dimension.

The structure of this factor indicates that in many of the courses, these topics, together, receive heavier

coverage than the other topics queried in the survey. We have labeled this dimension the

Later-Life-Cycle Course.

Early-Life-Cycle Course: The course content topics of Requirements Analysis/Specification

and System (Preliminary) Design were strongly loaded on the second dimension of the fmal factor

solution, suggesting that another typical software engineering course might be labeled the

Early-Life-Cycle course.

Theoretical-Issues Course: The course content topics of Software Metrics, Project

Management, and Legal and Ethical Issues form the third emergent dimension. We have labeled this

type of course the Theoretical-Issues approach.

Course Dimensions and OIMr Variables: Emergence of Course Profiles

Each of the extracted dimensions describes a potentially different style of software engineering

course in terms of course emphasis. Clearly it would be useful to develop more detailed course

profiles. We developed such profiles based on the interactions of the course dimensions and the other

course variables of level, organization, and project features.

The extracted factor loadings were multiplied by the original course content variables for each

reported course. In this way, factor scores for each of the three dimensions were calculated for each

individual course. Pearson product-moment correlations between the factor scores and other course

variables were calculated. Several correlations were significantly different than zero, at or below the

.05 significance level.

180

www.manaraa.com

Later-Life -Cycle Course: A significant positive correlation emerged between the

Later-Life-Cycle Course and the number of prerequisite courses, as well as the proportion of the final

grade related to the project (r=.33 and r=.33, p<.02 and p<.02). These two results suggest that this

type of course is product-oriented and is taken by experienced students. The course is

product-oriented because it focuses on those stages of the software life cycle which produce the

end-product, such as tested code, and because of the large proportion of the final grade related to the

project. The evidence that the course is taken by experienced students is supported by the correlation

with number of prerequisites.

The Later-Life-Cycle Course also has a significant positive correlation with the perceived

effectiveness of the course (r=.41, p<.OO5). This strong correlation suggests that instructors who

emphasize the pragmatic elements of software development and produce a working software product

see the course as more effective than courses which focus on other aspects of software engineering

and/or produce non-software products. The perceived effectiveness of the course may also be the

result of feedback from students. Computer science students are practiced at producing software, .and

may find the contents of the Later-Life-Cycle-Stages courses more familiar and comfortable than

courses with alternate approaches.

Early-Life-Cycle Course: The Early-Life-Cycle course factor has a strong positive correlation

with the use of written reports and a large percentage of course grade from the project (r=.42 and

r=.35, p<.OO3 and p<.02). These correlations suggest that a course which emphasizes the early

stages of the life cycle includes projects which produce written reports. This is not unexpected, as

many of the tangible products of early life cycle tasks are written documents.

Surprisingly, the typical Early-Life-Cycle course factor has a significant positive correlation

with the instructor acting as the end user (r=.30, p<.04). One can infer that an instructor who

emphasizes these stages of the life cycle would like the students to practice their skills in a "controlled"

setting. In the controlled situation the students would be able to focus on the techniques of

requirements analysis, specification, and preliminary design without dealing with the idiosyncracies of

real users.

181

www.manaraa.com

Theoretical-Issues Course: The Theoretical-Issues approach showed significant positive

correlation with course level and the use of journal articles (r=.40 and r=.32, p<.Ol and p<.03).

These results suggest that a course which emphasizes these topics is an upper-level course. The

students in this type of course are required to deal with more theoretical material than the students in

the other types of courses. Since much of this theoretical material is not included in textbooks, the

students are forced to read primary sources such as journals. This dimension also is positively

correlated with partial student determination of project grades (r=.41,p<.OO5). One can infer that in

the small number of courses which emphasize these theoretical issues, the students have reached a

status advanced enough to evaluate themselves fairly and effectively.

Course Profiles and Project Characteristics

In general, the project characteristics showed little correlation with the three types of courses

described above. On the surface, this result seems to be a surprising one. Intuitively, one might

expect that the project features, such as use of teams, toy projects, and multiple projects per class

would be positively correlated with the two life cycle courses, the Late-Life-Cycle Courses and the

Early-Life-Cycle Courses. Similarly, one might expect negative correlations between the

Theoretical-Issues courses and any of the project variables. However, the lack of relationship between

the content dimensions and the project variables actually is consistent with the results of the descriptive

statistics. The descriptive statistics clearly show that projects are a key component in nearly all

software engineering courses.

Course Profzles and Deparlment Demographics

None of the three course dimensions are significantly correlated with any of the departmental

demographics results. This suggests that the topics which appear in software engineering courses are

relatively independent of department or program size. Patterns of course content appears to be stable

across a variety of departmental settings.

182

www.manaraa.com

v. SUMMARY AND CONCLUSIONS

The question which motivated this survey was "What is a typical undergraduate software

engineering course?" The descriptive statistics show that the typical course focuses on the software

development life cycle and involves a significant project worked on by teams of students, with student

leaders. The course appears at the junior or senior level, and requires the students to produce written

reports and oral reports, as well as to take examinations. The project is often a real project, intended

for actual use. In most cases, the instructor acts as the user, and the class works on more than one

project.

A more fme-grained analysis of the results, however, shows that there are in fact three sorts

of courses currently being offered. The first and most predominant style of course is the

Later-Life-Cycle course. The Later-Life-Cycle course focuses on the phases of the software life cycle

that produce functioning code, including detailed design, coding, testing and maintenance. This

course is offered to experienced students, and the grade is heavily based on the project. The second

sort of course is the Early-Life-Cycle course. It emphasizes requirements analysis and specification

and system design. Written reports are a significant component of the course, and the students' grades

are heavily based on the project. Theoretical-Issues form the basis of the third sort of course.

Software metrics, project management and legal and ethical issues are typically covered in a

Theoretical-Issues course. The course is aimed at higher level students, andjournal articles are

commonly used as a source of materials. Students are also involved in grading the projects in this

course.

In reviewing the results, the lack of an adequate textbook - a concern raised in the case-study

literature - is echoed by the survey respondents. The Theoretical-Issues course, in particular, uses

journal articles as a source of material instead of textbooks. Undergraduate courses in any subject

typically use textbooks - not journal articles. Although there may be many reasons for using

textbooks, readability is certainly an important factor. Lemos [21] studied the readability of the ten

most popular computer science journals and found that they have a mean difficulty level of 33.7 on the

Hesch Reading Ease scale. Scores of 0 to 30 are considered to indicate very difficult reading

183

www.manaraa.com

(scientific journals) and scores of 30 to 50 indicate difficult reading (academic journals). Furthermore,

these ten journals had an average reading grade level of 15.32. This indicates that the reader needs to

read at least at the level of a college junior. Lemos states that "it is questionable whether such a high

degree of difficulty is appropriate [in journal articles], especially if unfamiliar material is being read"

(p. 157). We believe this statement applies to the materials chosen for use in an undergraduate

software engineering course as well. Journal articles are probably not appropriate at this level.

What is needed, then, are textbooks written at the reading level of undergraduates, and oriented

towards the three sorts of courses we have described. In particular, the textbooks need to be project

oriented, and ought to include sufficient detail on the various techniques to guide the development of

projects.

A second problematic area is the course-content topic of user interfaces. This topic is given

in-depth or moderate coverage in nearly 60 percent of the courses. However, very few software

engineering textbooks contain even a single chapter on this topic. Few books are available which

provide a surveyor introduction to the topic. Furthermore, most computer science curricula do not

include courses in cognitive psychology or human factors - the two disciplines most closely allied with

user interface design. Given these facts, one wonders where instructors are obtaining their materials

and their own training to teach this facet of software design.

Overall, however, the convergence of the reported software engineering courses into three

main streams is heartening. It suggests that the domain may be gaining some degree of maturity and a

sense of direction. The on-going problems of support materials and content-specific qualifications are

reminders that challenges still lie ahead for software engineering educators.

184

www.manaraa.com

REFERENCES

[1] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L. Engel, and G. Stokes, "Curriculum '78,

Recommendations for the Undergraduate Program in Computer Science," Commun. ACM,

vol. 22, no. 3, pp. 147-166, March1979

[2] E. Kant, "A Semester Course in Software Engineering," Software Engineering Notes, vol. 6,

no. 4, pp. 52-76, August 1981.

[3] M. L. Shooman, "The Teaching of Software Engineering," in ACM SIGCSE Bulletin,

February 1983, pp. 66-69.

[4] D. L. Carver, "Comparison of Techniques in Project-Based Courses," in ACM SIGCSE

Bulletin, March 1985, pp. 9-12.

[5] L. J. Mazlack, "Using a Sales Incentive Technique in a First Course in Software Engineering,"

inACM SIGCSE Bulletin, February 1981, pp. 37-40.

[6] G. Lapalme and J. Lamy, "An Experiment in the Use of ADA in a Course in Software

Engineering," in ACM SIGCSE Bulletin, February 1986, pp. 124-126.

[7] J. S. Collofello and S. N. Woodfield, "A Project-Unified Software Engineering Course

Sequence," in ACM SIGCSE Bulletin, February 1982, pp. 13-19.

[8] R. S. Pressman, Software Engineering: A Practitioner's Approach. New York: McGraw-Hill

Book Company, 1982.

[9] R. E. Fairley, Software Engineering Concepts. New York: McGraw-Hill Book Company,

1985.

[10] R. W. Jensen and C. C. Tonies, Software Engineering. Englewood Cliffs, NJ:

Prentice-Hall, 1979.

[11] D. D. Bickerstaff, "The Evolution of a Project Oriented Course in Software Development," in

ACM SIGCSE Bulletin, March 1985, pp. 13-22.

[12] S. Henry, "A Project-Oriented Course on Software Engineering," in ACM SIGCSE Bulletin,

185

www.manaraa.com

February 1983, pp. 57-61.

[13] L. I. Waguespack and D. F. Haas, "A Workbench for Project Oriented Software Engineering

Courses," in ACM SIGCSE Bulletin, February 1984, pp. 137-145.

[14] 1. S. Collofello, "Monitoring and Evaluating Individual Team Members in a Software

Engineering Course," in ACM SIGCSE Bulletin, March 1985, pp. 6-8.

[15] S. N. Woodfield, 1. S. Collofello, and P. M. Collofello, "Some Insights and Experiences in

Teaching Team Project Courses," in ACM SIGCSE Bulletin, February 1983, pp. 62-65.

[16] Publications Dept. of the ACM,ACM 1984 Administrative Directory. New York: ACM,

1984.

[17] L. L. Beck and T. E. Perkins, "A Survey of Software Engineering Practice: Tools, Methods,

and Results," IEEE Trans. on Soft. Eng., vol. SE-9, no. 5, pp. 541-561, Sept. 1983.

[18] K. Webb and H. P. Hatty, Obtaining Citizen Feedback: The Application of Citizen Surveys

to Local Governments. Washington, D.C.: The Urban Institute, 1973.

[19] H. H. Harman, Modern Factor Analysis, 3rd ed. Chicago: University of Chicago Press,

1976.

[20] D. Child, The Essentials of Factor Analysis. New York: Holt, Rinehart and Winston, 1973.

[21] R. S. Lemos, "Rating the Major Computing Periodicals on Readability," Commun. ACM,

vol. 28, no. 2, pp. 152-157, February 1985.

186

www.manaraa.com

Table 1 Table 2

DEPARTMENT AFFILIATION OF RESPONDENTS COLLEGE AFFILIATION OF RESPONDENTS

DEPARTMENT

Computer Science
Mathematics
Information Science
Electrical Eng. and CS

PERCENT COLLEGE

57 liberal Arts, A and S
21 Science
13 Engineering

8 Business
No Answer or N/A

Table 3

NUMBER OF FACUL TV PER DEPARTMENT

SIZE RANGE

1 - 10
11- 20
21- 30
>30

Table 4

PERCENT

50
26
18
6

PERCENT

30
30
14
8

17

NUMBER OF SOFTWARE ENGINEERING COURSES OFFERED PER SCHOOL

NUMBEROFSE
COURSES OFFERED

o
1
2
3

> 3"

PERCENT

33
41
12
3
1

"Note: The questionnaire only allowed feedback on three courses.
However, one respondent included information on 7 courses.

187

www.manaraa.com

so
III
~ W.J MAJORS
0 40 e 0 MI1<ORS
U
'" 30 ...
0
f- lO
Z
<oJ
U 10

'" '" "-

NUMBER OF STUDENTS

Figure 1: The dislribution of number of majors and number of minors at the schools responding to

the survey.

~
60-

0 so· m FUlJ,nME

E
U 40- 0 PART~'TIM£

'" ...
0 30·

~
20· <oJ

U

'" '" 10·
C.

~I ~ 101 -
100 1"0

NUMBER OF GRADUATE STUDENTS

Figure 2: The disaibution of number of full-time and number of part-time graduate students at the

schools responding to the swvey.

'" '" '" '" 20
;I
0
U IS ...
0
f- ,0
Z
<oJ
U
CO

NUMBER OF PREREQUISITES

Figure 3: The percent of courses described in the survey requiring different numbers of

prerequisites.

188

www.manaraa.com

TOPIC

RcqJAnal)'1i.

System Desip

DeuJlcd 0..;",

Coding

TC10nl
SWMcaics
ProjeaMpn,

User lntetfau

Main'/Modif.
l<pVElitieaI

10 20)0 "0 So ~ 10 It! 90 100

CUMULHIVE PERCENT

Figure 4; The cumulative percent of courses including In-depth, Moderate or Limited coverage of

ten different course content topics.

COURSE
ASPECT

Tcxtboou

I...-..lAMdcs

Written Reports

Oral Repon>

Ex"",

Heavy Rading

StaIr"" Probs.

II>rdwan:

Softwan:

10 N }O .0 SO 60 70 10 90 lOG

CUMULATIVE PERCE rr

Figure 5: The cumulative percent of COlmes r.lIed as Very Often, Frequently or Rarely being

characterized by nine different course aspects.

PROJECT

CHARACTERISTIC

Toy Projeeu

InsG'. is Uscr

One Project

T....,.

SNdent Leaden

P7Qject >-4K

Ow; Helps Grade

to 10 }O "0 JoG 60 10 10 90 100

C MULATIVE PERCENT

Figure 6: The cumulative percent of project-components rated as Very Often, Frequently or Rarely

being characterized by seven differem project characteristics.

189

www.manaraa.com

APPENDIX A

The Survey Instrument Used in the Study

SOFTWARE ENGINEERING COURSE SURVEY

yourname ______________________ __
Department ____________________ _ Title ~-------------------College ________________ _
Institution ______________________ _ (e.g., Arts & Sciences, Engineering, etc.)

Number of full-time faculty members in your department __
Number of undergraduate majors in your program __
Number of undergraduate minors in your program __
Graduate degrees offered: M.S. Ph.D.
Number of full-time graauate students in your program __
Number of part-time graduate students in your program __
Calendar System: semesters _ trimesters _ quarters_

SECTION 1 - Undergraduate Courses in Software Engineering

Section 1 contains general questions concerning Software Engineering courses offered to
undergraduates in your program. If your program offers no such courses at the under
graduate level, check here __ , and return your form in the enclosed envelope. (It is
important that programs with no courses in software engineering return the form anyway.)

Fill in one box below for each course in software engineering you offer.
+++
1 Course #1: Title +
1 Number of credit hours: 2 3 4 5 6 or more +
1 Level of student course is primarily aimed at : Fr. Soph. Jr. Sr. +
1 Number of prerequisite courses: 0 1 2 3 4 5 6 or more +
1 Is Data Structures a prerequisite for this course? yes no +
1 How effective is this course in educating students? low moderate high +
+++
2 Course #2: Title +
2 Number of credit hours: 2 3 4 5 6 or more +
2 Level of student course is primarily aimed at : Fr. Soph. Jr. Sr. +
2 Number of prerequisite courses: 0 1 2 3 4 5 6 or more +
2 Is Data Structures a prerequisite for this course? yes no +
2 How effective is this course in educating students? low moderate high +
+++
3 Course #3: Title +
3 Number of credit hours : 1 2 3 4 5 6 or more +
3 Level of student course is primarily aimed at : Fr. Soph. Jr. Sr. +
3 Number of prerequisite courses: 0 1 2 3 4 5 6 or more +
3 Is Data Structures a prerequisite for this course? yes no +
3 How effective is this course in educating students? low moderate high +
+++

190

www.manaraa.com

SECTION 2 - Course Content

For each of the following content areas, rate the importance of the topic to your software engi
neering course(s). For each content area, circle a 0 if that area is Not Covered in the course.
Circle a 1 if the area has Umited Coverage, a 2 if the area recieves Moderate Coverage or a 3 it
the are is covered In-depth. Fill in one column for each of the corresponding courses you listed
on page 1.

Remember, 0 = Not
Covered

1 = Umited
Coverage

Requirements analysis and specification

System (preliminary) design

Detailed design

Coding and programming practice

Testing

Software metrics

Project management

User interface design

System maintenance and modifications

Legal and ethical issues

SECTION 3 - Course Organization

2 = Moderate
Coverage

Course 1 Course 2

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

3 = In-depth
Coverage

Course 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

For each statement below concerning course organization, indicate how well it describes
each of the courses in software engineering you listed on page 1. Fill in one column for
each course. Use the following scale in rating the statements below:

o = not at all true, never occurs
1 = somewhat characteristic of the course, occurs rarely
2 moderately characteristic of the course, occurs frequently
3 = very characteristic of the course, occurs very often

Course 1 Course 2 Course 3

Textbooks are the primary source of materials 0 1 2 3 0 1 2 3 0 1 2 3

Journal articles are primary source of materials 0 1 2 3 0 1 2 3 0 1 2 3

Students complete written reports 0 1 2 3 0 1 2 3 0 1 2 3

191

www.manaraa.com

Students give oral reports 0 2 3 0 2 3 0 2

Students take exams 0 2 3 0 2 3 0 2

The reading load for the course is heavy 0 2 3 0 2 3 0 2

Staffing the course is a problem 0 2 3 0 2 3 0 2

Obtaining suitable hardware is a problem 0 2 3 0 2 3 0 2

Obtaining suitable software is a problem 0 2 3 0 2 3 0 2

SECTION 4 - Project Component

Fill in this section if any of your software engineering courses include a project component.
none of your courses include such a component, check here _, and return your form in
the enclosed envelope.

For each statement below, indicate how well it describes the project component of your
software engineering courses. Fill in one column for each of the courses you listed on page
1. Use the following scale in rating the statements:

o not at all true, never occurs
1 = somewhat characteristic of the course project, occurs rarely
2 = moderately characteristic of the course project, occurs frequently
3 = very characteristic of the course project, occurs very often

Course 1 I Course 2 Course 3

Projects are "toy· projects, not intended
for actual use

The instructor serves as the ·user" or system
requestor

Teams of students work on the project(s)

All teams (or the entire class) work on the
same project

Students serve as team or project leaders

Class members help determine the grade
the project(s) receive(s)

The project grade is a large part (40% or
more) of the student's course grade

o 123

o 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 123

-ALL DONE. THANK YOU! -

192

i
I

I
!

i

o 1 2 3 o 1 2 3

o 1 2 3 o 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

o 1 2 3 o 1 2 3

3

3

3

3

3

3

If

www.manaraa.com

APPENDIXB

Titles and Frequencies of the Undergraduate Software Engineering

Courses Described in the Results

Those titled "Software Engineering" or including the word "Engineering":

Software Engineering (12)

Software Engineering Project (2)

Introduction to Software Engineering (3)

Software Design and Engineering (1)

Computer Systems Engineering (1)

Those whose titles reflect stages in the software life cycle, or topics in SE:

Systems Analysis (2)

Systems Analysis and Design (1)

Software Design (2)

Software Design Methods (1)

System Design (1)

Project in System Design (1)

Software Project Management (1)

User/System Interface (1)

Titles related to the development of software systems:

Software Development Lab (3)

Software Construction (1)

Program Development Methods (1)

Computer Projects (1)

Software Lab on Large Computers (1)

193

www.manaraa.com

Miscellaneous:

Design and Construction of Large Software Systems (1)

Algorithm and Structured Methods (1)

Programming Techniques (1)

Infonnation Systems (3)

Database Management Systems (2)

System Programming (1)

Application Programming (1)

Program and Data Structures (1)

Advanced Programming (1)

Programming II (1)

Introduction to Structured Programming (1)

Topics in Computer Applications (1)

Introduction to Programming in HOL (1)

194

www.manaraa.com

+1.0 -

LeglElh •

• • ProjMgmt

SWMctrics

Theoretical-Issues
Cows<

APPENDIXC

Factor Plots

Facll>11
FKIDr2 -~I.-O~-~-~---+----I~-~-~rl-.0

-1.0

-l.0

Early-Life-Cycle
Co"""

-1.0

• DetDsgn

• Mainten
•• Testing

Coding

Later-Life
CycleCoune

+1.0

Figure 8: The factor suucture for Factor 2 and Factor 3 Figure 7: The factor strucrure for Factor I and Factor 2

Fao::corl
-1.0

F",lI;Ir3

+1.0 -
Theoretical-Issues

~--lc----_ Course

• LegElh

-1.0

ProjMgmt

Later-Life-Cycle
Co"",

Figure 9: The factor SlrUcrure for FaclOr 1 and Factor 3

195

www.manaraa.com

SECTION II

PART 2

TEACHING PROJECT COURSES

Most software engineering educators agree that project courses are es
sential components of software engineering education. This section presents
six papers on various considerations related to teaching these cour~es. Top
ics presented here include some observations on teaching project courses;
two complementary sequences on design and implementation of software
products; the system factory approach to software engineering education;
performing requirements analysis project courses for external customers;
an academic environment for software engineering projects; and the myth
of the real world in project courses.

Four papers from Part 2 were presented at the Conference. A synopsis
of each presentation and a question/answer session are included at the
beginning of Part 2.

www.manaraa.com

Synopsis of Presentation

Dr. Tom Nute

Dr. Nute presented the main points in his paper, tied them into some
of the other presentations at the workshop, and provided some of the back
ground and rationale for the ideas presented in his paper. Among the points
he made in his presentation were the following:

• The purpose of a software development course, is to teach students
how to develop, implement, and manage a large software project;
learning comes through experience.

• The best objective for an instructor is to exert a lot of supervision,
but with a minimal amount of guidance and suggestion. Thus, be
unobtrusive, but always present.

• From the point of view of the instructor, it is difficult to select a
project.

• The problem with going out and getting projects from real customers,
is that they tend to intimidate the students and faculty since it is
usually a multimillion dollar project.

• He advocates having a clean, precise project that allows students
enough time to finish, without feeling frustrated.

• A one semester project is barely large enough to use some of the
important tools.

• Projects that involve Artificial Intelligence concepts do not tend to
divide up well. Dr. Nute prefers to pick a project that lends itself to
partitioning among a team of anywhere from three to six students.

www.manaraa.com

• He advocates using a project that includes a lot of realism. Other
wise, students may develop the feeling that it has been contrived to
illustrate some point, and they don't bother to believe it.

• Unit level testing is very important; students should devote at least
one of those two semesters to testing their system.

• There are a number of drawbacks to using part-time faculty from
industry. They are not always available; they often do not have an
office on campus. Moreover, after they teach a class, they immediately
turn around and leave again.

200

www.manaraa.com

Synopsis of Presentation

Dr. Ed Robertson

Dr. Robertson presented the main points in his paper, which were tied
into some of the other presentations at the workshop. In his paper, he
provided some of the background and rationale for the ideas which were
presented. Among the points he made in his presentation were the follow
mg:

• During the senior year as well as the first year of the Graduate pro
gram, students are exposed to concepts in terms of depth rather than
breadth.

• There is a two-semester sequence which combines two related courses:
Information Systems and Software Engineering Management.

• Abstraction is a major tool in designing, and mathematics is an ap
propriate vehicle for practicing that type of abstraction.

• Having firm milestones is a major step in a successful project. Among
these milestones, with the exception of coding and testing, are large
written documents and oral presentations.

• Participation of all the group members in the oral presentations is
stressed.

• Having a two semester course allows the opportunity during the semester
break, to stop, realign the teams, and redefine the project scope if
necessary.

• The students from the management course supervise the teams in
the undergraduate course. This takes some of the burden off the
professor, who may have up to 10 teams to supervise at a time.

www.manaraa.com

• The biggest advantage of having this extra help in the course, is that
it opens the channel of communication. Students are sometimes very
hesitant to talk to their professor about certain things, whereas the
supervisors, often viewed as other students, tend to be a little less
intimidating .

• Because of the affiliation with real clients, students and professors are
often caught between the pressures of delivering a real product to a
real client, and the constraints of the educational environment.

202

www.manaraa.com

Synopsis of Presentation

Dr. Walt Scacchi

Dr. Scacchi presented the main points in his paper, which were tied into
some of the other presentations at the workshop. In his paper, he provided
some of the background and rationale for the ideas which were presented.
Among the points he made in his presentation were the following:

• It is important to understand how large systems come to be the way
they are, no matter what kind of setting they are in.

• In working with software technology transfer, it is possible to combine
software engineering, research development, and education together.

• Software engineering is difficult because it has to be done in a real
world environment; the laboratory setting limits the kind of resources
that are available.

• However, there are enough similarities, that you can use a laboratory
to a certain degree, to understand how the real world works.

• When building bigger systems, organizational problems start to dom
inate engineering problems. It is the organizational problems that are
the more critical ones to solve.

• With regard to quality assurance reviews, someone is usually assigned
to be responsible for the quality of somebody else's project. Conse
quently, reciprocal relationships are formed.

• For intraorganizational technology transfers, each group is assigned
to be a user of some other group's tools.

www.manaraa.com

• In an academic environment, he doesn't see a need to build produc
tion quality systems - there's no reward for it. However, there are
rewards for building research prototypes; they can be published and
supported by industry and government.

204

www.manaraa.com

Synopsis of Presentation

John Brackett

Dr. Brackett presented the main points in his paper, tied them into
some of the other presentations at the Workshop, and provided some of the
background and rationale for the ideas presented in his paper. Among the
points he made in his presentation were the following:

• Students who study requirements analysis typically learn some of the
techniques for doing requirements analysis, but they do not gain ex
perience in obtaining raw information from a variety of sources, syn
thesizing the requirements, and getting user review and approval.

• Most students have very little experience in verbal or written com
munication with people who are not sophisticated in the use of com
puters; most of them have never met a customer.

• The project course (which has been offered three times) has the fol
lowing characteristics: The projects only produce requirements speci
fications, and do not go through the entire lifecycle process of design,
development, etc.; projects are done by teams of three to five students;
all projects are done for external customers; the projects produce in
dustrial quality results; the customers are nonprofit organizations.

• There were three objectives for the requirements analysis project
course: (1) the projects (which are done for external customers) pro
vide professional quality documents and presentations for the cus
tomers; (2) the students gain real experience with some of the meth
ods they learned in the Software Engineering course and understand
what the work products really are; and (3) they gain experience in
working with noncomputer knowledgeable people, to understand dif
ferent points of view, to get that on paper, and to get some degree of
agreement among different people.

www.manaraa.com

• There must be at least one customer representative who has reason
able expectations of what computers can do; the customer must also
recognize the benefits of what the students are doing and be open to
analysis and recommendations by an external body.

• Projects produce three deliverables: The requirements specification
for the recommended system; a report to the senior executive in the
organization; and a one hour presentation to the Board of Directors.

• The instructor must work with the students to guide them in effective
use of their time, and sort out intermediate milestones for the project.
The instructor must also estimate the scope of the project accurately.

206

www.manaraa.com

Questions and Answers on The Project
Course Panel

Jim Tomayko: There are two general curriculum questions I'd like
the panel to discuss. The first one is, where do you put the project? Do
you mix it in with existing course work, so that they can be mutually re
inforcing, or do you wait until they've learned something, and then unleash
them on it at the end, which is what you'd be doing if it was a Master's
Thesis Project?

Tom Nute: At TCU, at the undergraduate level, we have a one
semester course that all of the students are required to take. They have to
take it as a senior. It's called Senior Design Project. However, we strongly
encourage them to take it in the Fall semester of their senior year, because,
while we strongly discourage incompletes, if they screw it up, that leaves
them a I5-week fall-back position, which has been used on more than one
occasion. At the graduate level, we generally have the two semester project
run concurrently with at least one other course that's taught in their last
two semesters that they are in the program. On occasion, students will, for
personal reasons, elect only to take one course a semester, in which case
they're limited to just taking that project course as the last course in their
sequence. But as a rule, we try to overlap some of the course work, with
the project course, more because of administrative constraints than any
pedagogical reason.

Walt Scacchi: At USC, in our Master's Program, which is a Master's
in CS, the project course represents roughly 30 percent. It's eight units out
of 26, required for the degree. We have no thesis for the Master's. We run
fall through spring. We don't give incompletes, although we do encourage
people, who are part-time or who can stay on, to do directed research,
during the summer. Since our graduate student population is split between

www.manaraa.com

one-year students, the full-time people do our project in conjunction with
typically two or three other semester courses. For the industry people, who
take two years, they have the choice of doing it the first year or the second.
Most take it the first year since this is the kind of course that they really
wanted to have.

Ed Robertson: In our context, since we have two full-year sequences,
which are taken by Master's students, I think the question is, is the first
year team project course necessary, in order to be a good supervisor in
the Software Engineering Management Course? I think it definitely is.
I have, once or twice, let people who've had other team experience, be
project supervisors, without going through the information systems class.
But otherwise, they just don't have the sensitivity, to the various issues,
that they need to have, to actually manage a team.

John Brackett: I think that Dick Fairley's talk and Mark Ardis'
talk answer the question. We require at least five out of the six required
courses, before we can do the first of the projects, because the projects are
regarded as integrating what you learned in the course curriculum.

Jim Tomayko: For my second question, should they have to write
an evaluation of what they have done, in some form?

Walt Scacchi: Well, as part of our documentation regime, we do
require that all deliverables, and there were eight, provide a narrative de
scription, according to a scheme that we've given them, as to basically the
kinds of problems that they're running into, what they're learning, what
they would do if they could do it again or do it differently. So, we do require
them to provide that, as part of the deliverable, because we think that's
one of the things that is traditionally left out of systems and often tells you
a lot more about what's going on in the system, than the specifications do.

Ed Robertson: We have attempted, in previous years, to get students
to keep a project log book, that has been almost consistently observed in
the breach. We do have them, however, do a post-mortem at the end. It's
not a very large one, but it's something that they approach with a great
deal of trepidation and after it's done, they're very grateful for. I think it's
definitely a good idea and I wish we had more time to do that.

Tom Nute: One of the requirements that I impose on my students,
is that they provide a critique at the end of the course, and I make that
generally anywhere from five to 10 percent of their grade. Usually the team,
as a whole, is required to put in a critique of what they found successful and

208

www.manaraa.com

what they felt was either unsuccessful or not all that productive. Then, I
have each individual turn in a critique of their own, about what they think
of working in a team and in particular, what they think of the other team
members. I try to stress to them that this is not an attempt to fink out
on their co-workers, but, on the other hand, they should be honest, since
I'm not aware of all of the work that went in. A lot of times, things go
on behind my back and there may be an individual who just likes to work,
two to six in the morning. Since I never see him, I assume that he doesn't
contribute as much as the others, and often times, his critiques give me
some insight.

I might also add that I do, on occasion, give different grades to members
of the same team and, on one occasion, I had to take even more extreme
measures.

John Brackett: I guess mine is about closest to Ed's. As part of
the project notebook, besides all the deliverables to the customer, there is
a student post-mortem, which is also presented in the public presentation
of both the project results and the evaluation. Also, what is delivered to
the customer has to have a very precise description of what didn't get done
and what the recommended steps are that ought to be performed.

Ed Robertson: I've decided, after this meeting, that it behooves me
to put my money where my mouth is and I'm going to go back and give a
post-mortem of myself, in the presentation of the class.

Jim Tomayko: I'd also like to add that at Wichita State, we can
have them do a practicum, under their existing supervisor at work. The
supervisor and two of our professors form a committee. The student writes
a technical report and gives an oral presentation on the report and is then
given an oral exam, which is fairly similar to the MS-type situation. Are
there any questions from the audience?

Bob Lechner: I have a question for Walt Scacchi about his long-term
research project tools. It's a very good idea and I'm surprised that no one
else is apparently doing that, although we've been doing it at Lowell, on
a much smaller scale. It's a similar tool development project and it does
involve static analysis, using Ingress and GKS interface for graphics. Our
intent is to ultimately be able to browse through text and graphics, using
this system, automatically extracting data from program libraries.

My question is, do you have any experience with using the tools you
developed? Are these software development analysis tools useful to you, in

209

www.manaraa.com

further project development or is it too early for that? If you have such
experience or even if you don't, do you know any way that you can quantify
the way in which the productivity of your teams might increase, during any
life cycle phase, by using some of the tools that you're developing or can
make available to others?

Walt Scacchi: The first question on the experiences, yes, we do use
the tools in the projects, as well as in some of the contract works. We do
have practical experience and some of these tools are out there in industry.

On productivity measurement work, as I mentioned, we initially looked
at the cost estimation work of Kokomo's cost estimation. You can twiddle
it to do productivity measurement, because in a forthcoming paper which
is cited in my paper, we basically found that that's unreliable technology.
There is no such thing as productivity measurement technology, in our
VIew.

Chuck Pfleeger: I can infer from the comments made on the panel
that all of you are very dedicated teachers who are very concerned about
this course, and that you're very willing to contribute to the course and
project to make them succeed. It's clear from the reactions of people sitting
in this room that anyone who has ever run such a course has to invest an
enormous amount of time in it. After doing this for a few times around
you may reach a burnout point. Does anyone on the panel have some good
suggestions for reducing the high instructor involvement for the course,
while still maintaining the quality?

Ed Robertson: The one thing that we have done is to take the
sections of the course and divide them horizontally, rather than vertically:
I did the "book learning" part of both sections and Jim Burns did the
project part of both sections. That worked much better, from several points
of view. Next year, I hope to have three people signed up: one person will
do the book learning part of the project course or the information systems
course, one person will do the project part of both courses, and one person
will do the software engineering lecture part of the second course sequence.

Tom Nute: I might add that there's also something of an admin
istrative problem here. You have to have a chairman who will convince
your dean that even though you're not standing in front of the class three
hours a week, you deserve consideration for that many contact hours, if not
more. This hasn't been a bad problem, fortunately, but it's been one that's
required a certain amount of salesmanship.

210

www.manaraa.com

Walt Scacchi: The way that I've addressed this is basically I trained
myself to do it. I may be more of a marathon runner than a sprinter, but
I didn't try to go out in the first year and run a marathon. I went out and
ran a 1K. Over the years, I have trained myself to endure an outrageous
amount of work. On the other hand, you start to find out the value of
project management skills!

Ed Robertson: The other issue you addressed was a major motiva
tion for me to start the supervisor's course, which has been successful, all
the way around. It has been better, educationally, for the students. They
have produced better products. The supervisors have gotten a lot out of it
and it has been much easier on the instructors.

John Brackett: The reward structure that Dick Fairley mentioned
earlier is an important component of having this level of project courses
at the Wang Institute. A project course, even though there's only five

or six students, is regarded from a teaching credit point of view as being
equivalent to a course that has 30 or 40 people in it.

Jim Tomayko: I would like to reinforce what Walt said: You can
bring yourself to delegate properly, over a period of time. Experience always
helps. Also, I keep a bottle of Aspirin in my briefcase and I recommend
early retirement!

Daniel Hoffman: I'd like to direct my comment and question to Walt
Scacchi. You talked about developing a 30,000 line prototyping Pascal and
you said that your programmers' productivity, in lines of code per unit
time, is about 10 times greater than the industrial average. I'd just like to
point out that this average corresponds very closely to Brooks' prediction
for productivity, working on prototypes versus production quality code. So
actually, it's not a 10 times increase in what's currently being done, it's a
different product that's being produced.

Walt Scacchi: My comment on that would be that the numbers I
cited were for the same kind of system in the industry; that is, for building a
prototype in industry and not for building production. I got these numbers
from Barry Boehm.

Daniel Hoffman: My question is, you said that your students wrote
specifications for all of the code and I'd like to know in what specification
language did they write the specifications?

Walt Scacchi: Over the years, the choice of specification languages
has evolved. We started, early on, with more informal ones. In 1981 and

211

www.manaraa.com

1982, we were working with RSL for early specifications, MIL 75 for archi
tecture and PDL. We are currently working with Gist, in doing functional
specifications. In addition, we have a language of our own, called New
Mil, which is what we use for specifying architecture, configurations, and
versions. Then, we implement in C, C++, or Common Lisp.

Harvey Hallman: Ed, I have a couple of questions I'd like you to
answer. I understand your program is optimal, a student elective. What
motivates the student to take such a project course? What do you do when
the class size is either too small or too large? What happens when a student
drops the course, because he got in over his head?

Ed Robertson: Well, we've never had a class where the class size
has been too small. It is a very popular course. Of all of the sequences
that I mentioned, it is, by far and away, the most popular one, not only
by students, but we just completed a poll of our alumni and that feeling
seems to prevade, that of all the courses they had, that was the most
important one, for their later professional development. Moreover, the
students recognize this.

As far as dropping the course, it has been necessary to reconfigure teams,
as we go along.

Harvey Hallman: What happens when you have too many students
enrolling for it? Some colleges restrict the number of students.

Ed Robertson: Well, we have kept caps on, but a cap of 50 students
is totally unreasonable. We're down to about 30 students in a section.

Jim Tomayko: Walt, what was your smallest group?
Walt Scacchi: We've had as many as 87 and as few as 22 students,

but those numbers change over a year. For example, we actually had 87 last
Fall and now, we only have 48. So, having a 30 to 40 percent drop-out rate,
at the semester point, is not at all unusual, because some people graduate
midyear or maybe they just weren't prepared for the work.

On the other hand, we decided to try and experiment with turning
Brooks' law upside down. In the project, we actually staff heavy early on
and find out who's really interested in the project. So, if you have a one
year option or a two-semester option, you should be prepared for shrinking
numbers, look at that as an opportunity of getting the dedicated people.

Jim Kiper: The problem we face in an undergraduate course, is that
we have a projects course and it doesn't have a software engineering course
as a prerequisite. This is a first introduction to software engineering, so

212

www.manaraa.com

you have these concepts you want them to understand. You want to talk
about them, before they do it, but on the other hand, you have this large
project you want them to get into, as early as they can. How do you solve
that problem?

Ed Robertson: There is a very, very standard comment I get at the
end of the course: "Gee, I really wish we'd followed the advice you gave us
early on in the year." My feeling is kind of a velcro theory of education,
that these ideas aren't going to do any good, unless there's something to
stick to anyway. So, I generally found that I can lecture myself blue in
the face about some of these ideas and they're just not applied. Now, it's
partly the fact that the project is simply not massive enough in scope. But
I think there has to be this, if not failure, you're skirting along the edge of
disaster, before they really appreciate the value of some of these things.

Jim Tomayko: I'd like to reinforce that. I think getting them in
volved, as soon as possible, even though they're maybe one week experi
enced, is still better than trying to lecture it all out and then going into
it.

Jim Kiper: Would you advise kind of a spiral view then? I mean,
maybe covering everything really quickly, give them a flavor, and then go
back and hit it again?

Walt Scacchi: Well, the approach that we've taken, is somewhere
close, but not your last alternative-do it and then do it again. The first
time through, we focus more on the reading and assimilation of concepts
and ideas and ability to reason through those. The practice in the project
gives people a very different understanding of some of the concepts.

We have another strategy, which is regularly reconstructing people's
understanding of what's going on. We use the class meetings during the
project stage to talk about problems that people are having, to go back
and go over the appropriate concepts again.

Jim Tucker: In many areas we have projects courses that deal with
some aspect of full-sized projects. In this sense, couldn't we increase the
magnitude of the projects from tens of thousands to hundreds of thousands
of lines, realizing that once we design the specifications of a program that
we're convinced we could write, we don't have to write it? What do you
think?

Tom N ute: My feeling is that it's probably not how large projects
get designed in practice. Usually, whether you want to admit it or not,

213

www.manaraa.com

there's a prototype system developed. It's either developed at the end of
the original ~chedule, or you face up to it immediately. But if I were to
have them design a system of 100,000 lines initially, without ever getting
in there and getting their hands dirty, then turn it over to somebody else
and say "implement it," I think it would be a little artificial. I'd rather see
them carry it a little further through and maybe scale the project down, so
that they can see the transition, from the design, to the implementation,
and then realize that they have to go back and iterate on the design again.
If you cut off that feedback path, I think that you sacrifice a lot of the
realism of the project.

Walt Scacchi: I'll look at things a little differently, which is to say
that I think the kind of challenge that was posed, is one whose time has
come. It may be possible to do for large scale software what our electronics
friends did for large-scale integration.

214

www.manaraa.com

Abstract:

Some Observations on Teaching
a Software Project Course

by

James R. Comer
Tom Nute

David J. Rodjak

Computer Science Department
Texas Christian University

Fort Worth, TX 76129

The main purpose of a software project course is to give

students experience in developing large software systems. The

authors offer some observations and suggestions based on their

experience teaching such courses. In particular, they make

recommendations about selecting suitable projects, organizing

student groups, use of development schedules, difficulties in finding

qualified instructors, and the need for extra administrative support

when teaching such a course.

www.manaraa.com

Introduction:

Most of the software engineering programs described in the

literature include a one or two semester project course. 1 The

objective of this course is to prepare students to implement and

manage large software projects. 2 The authors make some

observations based on their experiences teaching such a course. In

particular, some of the problems associated with selecting suitable

assignments, use of student teams, development schedules, finding

qualified instructors, etc. for a project course are discussed. The

authors do not cover the mechanics of teaching a project course

which is discussed in the references [Tha86], [Wor86], [McK86], and

[Bus79]. A greater value than the suggestions offered is that the

reader is made aware of some of the potential difficulties that may

be encountered in a project course so that they can be better

prepared to handle the problems when they arise.

1. This includes the Software Implementation Projects I and II
courses offered at Texas Christian University, the Software
Engineering Project Course offered at the Wang Institute of Graduate
Studies [McK86], the Software Engineering Laboratory offered at
Seattle University [Lee83], the Software Engineering Methods course
offered at Carnegie-Mellon University [Kan81], the Computer
Program Engineering course offered at the University of Toronto
[Wor86], the Clinic course offered at Harvey Mudd College [Bus79],
and the software engineering project laboratory offered at the
California State University at Sacamento [Tha86].

2. Thayer [Tha86] gives a more detailed set of objectives for a
project course.

216

www.manaraa.com

Shortcomings of Traditional Course Projects:

The primary objective of the project course is to give students

experience in the development of a large software system.

Generally, students have worked alone on relatively short

programming assignments whose purpose has been to illustrate

some algorithm, language feature, data structure, or methodology.

These projects have a narrow scope, are will defined, and are small

enough that they can be attempted with little preliminary planning

or organization. In particular, there is little need to develop the

support materials, such as requirement specifications, detailed

designs, design reviews, code walkthroughs, test plans, user

manuals, etc., usually associated with a large software system.

A drawback to these small programming assignments is that the

support materials identified above, which are essential for large

software development and maintenance efforts, are inappropriate

for a small programming assignment. Indeed, most student

assignments can be completed in a few days or weeks; do not require

extensive interaction with other designers, programmers, and users

during the implementation; are not required to be maintained; and

the detailed information necessary to debug and test the program

can be readily determined by reading the code. Thus, when a student

is required to develop these support items as part of their

assignments, they are left with the impression that the items are an

unnecessary extra burden. It is difficult for a student not to carry

this same attitude over to the larger projects that they will

encounter in practice. Consequently, while small programming

217

www.manaraa.com

assignments can be an effective means of teaching a specific point,

such assignments may actually encourage the student to avoid the

very methods that should be used in a more realistic setting. Hence,

students need to learn that when "scaling up" from a small system to

a large system, the level of effort increases in an exponential, not a

linear, fashion.3

Selecting a Suitable Project:

As stated above, the primary purpose of a project course should

be to expose students to the types of problems that are encountered

when developing and maintaining large software systems. It is

necessary to select projects that are realistic, large enough that the

support items identified above are of value, and at the same time

remain feasible with the resources and time available to the

student. This presents a major challenge to the instructor of such a

course. Some of the problems that an instructor must face are

described in the following paragraphs.

If a project is too artificial, then it begins to look contrived.

This is likely to leave the student with the impression that the

project was "staged" to promote the use of the support materials,

but that these items may not be necessary for the more typical large

system. This impression only serves to further confirm the

3. Thayer [Tha86] describes several of the characteristics that
distinguish a large system from a small system.

218

www.manaraa.com

incorrect ideas that a student may have formed when developing

small programming assignments. One means of avoiding this danger

is to select projects from actual "customers" who intend to make

use of the resulting system. This not only lends creditability to the

project, but can lead to a sense of accomplishment as well as

provide an additional incentive to do a complete and professional

job. Busenberg [Bus79] and Thayer [Tha86] discuss potential sources

for customers. They include the instructor, others within the

department or academic environment, and sources in business,

industry, and government.

If the project is too small then the student is once again faced

with the problem of having to develop extensive support materials

which are not actually required to implement a successful small

system. Furthermore, if more than one student is working on the

project, then there may not be a natural way of dividing the problem

into reasonable subproblems that can be developed more or less

independently by different members of the team. This is just a

repeat of the problem described above when the student is given

short, specific, programming assignments.

Conversely, if the project is too large, the student is unable to

complete it. This often leads to frustration even though the

objectives of the assignment (Le. the development of the necessary

support materials) may have been met. This frustration can mask

from the student the benefits that the support materials contributed

towards the partial development of the project. Indeed, the student

219

www.manaraa.com

may be left with the impression that had they not been required to

devote so much effort to the apparently extraneous support

materials then a successful project might have been completed.

Again, the end result may be just the opposite of the intended

objective of the project.

The prior two paragraphs imply that a balance must be struck

between selecting a project which is too small and a project which

is too large. Unfortunately for the instructor, there is no general

method for selecting a project which satisfies these two

requirements. A great deal depends on the prior experience and

training of the members of the class. What appears to be a large

programming task to a novice might be viewed as a small exercise to

an experienced individual. Even individuals with similar

backgrounds may approach the same assignment in different but

equally effective ways -- one student may be successful by

approaching a problem as if it were small and immediately begin

coding while another student, equally qualified, may find it more

advantageous to view the same problem as large and begin by

developing written requirement specifications and detailed designs.

Hence, the instructor must take the background and talents of the

students into account when selecting projects. Kant [Kan86] offers

several suggestions for possible projects.

220

www.manaraa.com

Use of Student Teams:

Most large software systems are implemented by teams rather

than single individuals. Thus, students should be axpected to work

in groups to give them experience at working in teams. A group

consisting of two individuals is too small to adequately illustrate

many of the advantages and problems associated with groups.

However, as the size of a gJOUp increases there is a corresponding

risk that one or more members will not perform their share of the

assignment. The authors' experience suggests that five is about as

large a group that should be allowed. Therefore, groups should be

limited from three to five students with three or four being the

ideal.

The particular organization of group members is not as

important as ensuring that all members gain some experience in

various capacities. Thus, everyone should be expected to perform

certain clerical tasks, such as being group secretary or librarian, as

well as serving in a role requiring leadership and management skills,

such as the chief programmer or project leader. Since too frequent a

change in the roles of individuals is likely to lead to confusion, the

number of role changes should be minimal consistent with the need

to have all members serve in various capacities. A logical time to

perform these changes is between stages in the life cycle of the

development effort, such as after the design effort and prior to

programming. Alternatively, the change can be made at a logical

breaking point in the course such as between semesters. It is

probably best to have the stronger, more experienced individuals

221

www.manaraa.com

serve in the leadership roles at the beginning of the project when

the greatest organizational skills are required. Thayer [Tha86] and

McKeeman [McK86] offer additional suggestions on how to organize

students and the assignment of responsibilities in a software

project course.

One side benefit to the instructor from using groups is that the

differences in talent between individuals tends to be evened out.

Group efforts work at a level which is common to the majority of

the members, assuming everyone is making a sincere effort to

participate. The weaker members are pushed to exert more effort

than they might otherwise put forth while the stronger members

must take more time to make their thoughts clear to the other group

members. The net effect is to reduce the variation in effective

performance between members of a group. Assuming that the talent

is spread more-or-Iess uniformly across all the groups, this has the

effect of having all groups have nearly the same capability. Since

the problem of selecting an appropriate sized project is compounded

by differing levels of capability, the use of groups tends to simplify

the task of choosing the correct size project.

Development Schedules:

Another area that deserves special attention in a project class

is schedules. Students should be required to develop a realistic

schedule initially and then be expected to adhere to this schedule.

The schedule should include dates for concrete milestones, such as

222

www.manaraa.com

the customer giving written approval of the requirements, design

walkthroughs being completed, a given module successfully compiled

and linked with the other modules, unit level test completed for a

given module, etc. It is important that milestones have some

tangible evidence that they have been accomplished to avoid the

problem of relying on percent completed estimates made by the

students.

Any variances from the initial schedule should be justified in

advance and in writing. The instructor should extract a grade

penalty for any schedule slip unless it is completely beyond the

student's control or ability to anticipate. This hard-nosed approach

has the advantage of discouraging incompletes at the conclusion of

the semester and introduces the student to the realities of schedule

constraints in the "real-world."

Potential Problems with Customers:

A word of caution is in order when dealing with customers who

expect a usable piece of software at the conclusion of the project

course. As has already been noted, such customers are useful

sources of realistic projects with the added benefit that the

resulting system may prove to be beneficial to someone. However,

such customers are generally not as interested in the educational

value of the project as they are in its potential value to them. In

particular, customers have little understanding of the types, sizes,

or schedules for projects that can serve as good pedagogical devices.

223

www.manaraa.com

Furthermore, customers must understand that student developed

projects may not be completed or of the same quality as

professionally developed software (though student projects are

often of extremely high quality). Also, after the project is

completed, the students will no longer be available to maintain the

system.

A number of steps may to be taken to help reduce the potential

problems with software developed by students for a customer. The

most important step is to establish firm requirements as early as

possible. Once established, these requirements should not be

allowed to change except in the most dire of circumstances and even

then not without a thorough review of the potential impact on the

remainder of the schedule. It is important that the instructor be

included in any discussions about requirement changes and have final

say in any decisions. The problem with letting the students and

customer try to negotiate a change on their own is that neither party

may fully appreciate the potential impact on the rest of the project

from even an apparently minor change. Furthermore, without the

stabilizing influence of the instructor, the customer may exert

undue pressure on the students to accept nonessential changes. As

has been often noted, frequent requirement changes may account for

more schedule slips than any other factor in the development of a

system.

While it is important to protect the students from changes in

requirements, students must also understand their obligation to

224

www.manaraa.com

satisfy customers. One method that is gaining acceptance is to use

rapid prototyping to debug the requirements and initial design.

Rapid prototyping involves developing a preliminary and partial

system which exhibits many of the external properties of the

system under development. This allows the customer and developers

to identify and correct flaws in the requirements and proposed

design approach early in the implementation process. Customers and

students must understand that a prototype system, even a rapidly

developed one, requires time in the schedule. However, rapid

prototyping is not just an academic exercise, this investment should

ultimately result in a better system being developed in less time.

Rapid prototyping is simply a formal recognition that successful

large software systems are not developed correctly on their first

attempt -- the first attempt merely serves to identify what does

and does not work so that a successful system can be developed on a

subsequent attempt.

Selecting Instructors & Administrative Support:

The final area that deserves attention deals with the

administration of a project course rather than with how it should be

taught. Finding qualified faculty is a particularly difficult problem.

Ideally, the instructor should be an effective teacher, vyell versed in

computer science and management principles, and have extensive

experience in the development of a wide variety of large software

projects. In practice, it may be difficult to even find someone

willing to teach the course, much less obtain someone who is

225

www.manaraa.com

anywhere near ideal. Part of the problem is that regular faculty may

not consider such a course legitimate computer science or

management science. Furthermore, those individuals who have the

desired experience are more likely to be found in business, industry,

or government than in an academic environment. Indeed, the bulk of

the large software systems are developed outside of academia so it

is not surprising that most of the experienced practitioners are not

part of the regular teaching faculty.

Often the answer to finding a project course instructor is to

rely on part-time help recruited from the business world. However,

there are often problems with relying too heavily on part-time

instructors. Real or apparent problems associated with part-time

instructors include:

• Not being available to answer student questions except

during class (part-time instructors may not even have

access to an office on campus).

• Part-time instructors are often viewed as second class

citizens by administrators, regular faculty, accredita

tion boards, and even the students.

• Because they may not be readily available and because of

their perceived lesser status, part-time instructors are

frequently not consulted about ways of improving

curriculum, facilities, etc.

226

www.manaraa.com

• Part-time instructor teaching methods may not be as

well developed as those of a regular faculty members.

• The demands of their regular jobs may take precedence

over their part-time teaching obligations (Le. part-time

instructors may lack the commitment expected of a

teacher).

• Part-time instructors may show an excessively strong

bias towards teaching the methods used in their regular

job (Le. there may be a loss of objectivity).

Another administrative concern is the relatively high cost of a

project course. The demand for computer resources is usually high,

there may be a need for special software development tools and

hardware facilities, and the class size is frequently small. Since

software engineering is not a mature discipline, there is a lack of

good texts and an instructor may require extra time for

preparations, reviewing proposals from potential customers, grading

large student assignments, and generally ensuring that the

somewhat unconventional course runs smoothly.

In addition to its high cost, the project course may have to

compete with the expanding needs of more traditional computer

science courses. Such conventional courses may appear to offer

more return for the educational investment dollar due to their large

227

www.manaraa.com

enrollment, their relatively low resource demand per student, and

the availability of qualified instructors, teaching materials, etc.

However, the apparently high cost of teaching a project course

should be viewed in terms of the benefits gained by the students. It

is the authors' belief that many of the most important lessons

concerning the development of software systems are learned as a

result of the students taking a project course.

Summary:

The purpose of a software projects course is to expose students

to the unique protlems associated with large systems development

and to allow students to apply the principles, tools, and

methodologies taught in other courses. Since this experience is an

important part of a student's education, a project course is an

essential component of any software engineering program. However,

there are a number of problems associated with offering such a

course. Some of these problems include identifying suitable

projects for students to work on, developing and adhering to

realistic schedules, finding qualified instructors, and obtaining the

support for the administration to offer the course in the face of its

apparent high cost. The authors have offered some ideas for

addressing these problems, but there are no general solutions that

cover all cases. However, being aware of the problems in advance

may allow administrators, faculty, and students to cope with them

better as the difficulties arise.

228

www.manaraa.com

Bibliography:

[Bus79] Busenberg, Stavros N., and Tam, Wing, C. "An Academic

Program Providing Realistic Training in Software Engineering,"

Communications of the ACM, 22, 6, June 79, 341-345.

[Kan81] Kant, Elaine. "A Semester Course in Software

Engineering," ACM Sigsoft Software Engineering Notes, 6, 4, Aug.

81, 52-76.

[Lee83] Lee, Kyu Y., and Frankel, Eric C. "Real-Life Software

Projects as Software Engineering Exercises," ACM Sigsoft

Software Engineering Notes, 8, 3, July 83, 39-43.

[McK86] McKeeman, W.M. "Experience with a Software Engineering

Project Course," Technical Report TR-86-01, Wang Institute of

Graduate Studies, Tyngsboro, MA, Jan. 16, 86 (reprinted in

Proceedings of the SEI Education Workshop, Feb. 27, 86, Carnegie

Mellon University, Pittsburgh, PA).

[Tha86] Thayer, Richard H., and Endres, Leo A. "Software

Engineering Project Laboratory: The Bridge Between University

and Industry," Proceedings of the SEI Education Workshop, Feb. 27,

86, Carnegie-Mellon University, Pittsburgh, PA.

[Wor86] Wortman, David B. "Software Projects in an Academic

Environment," Proceedings of the SEI Education Workshop, Feb. 27,

86, Carnegie-Mellon University, Pittsburgh, PA.

229

www.manaraa.com

Two Complementary Course Sequences on the
Design and Implementation of Software Products

JAMES E. BURNS AND EDWARD L. ROBERTSON

Abstract-For many students, the first chance to produce software as part of a team
comes with the first work experience outside a university. The difficulties of working
with others are compounded by the problems of working in a new environment and for
a client with ambiguous and changing goals. Although it is difficult to approximate the
"real-world" accurately in an academic course, we have implemented two full-year course
sequences which apparently give our students some insight into the problems they will face
when they leave the university. One course requires the development and implementation
of a software product by a team of undergraduates, and the other requires experienced
graduate students to act as supervisors for the undergraduate projects. We describe the
content and structure of these two sequences, emphasizing how they support and enhance
each other. We believe other curricula would benefit from similar courses.

Index Terms-Computer Science education, software engineering, team projects.

I. INTRODUCTION

As pointed out cogently by Fairley [4J, the needs and desires of industry are not

being consistently satisfied by bachelor level computer science graduates. In particular,

industry wants software engineers, while most undergraduate programs produce entry-

level computer scientists. One reason that software engineering is not part of the core of

more undergraduate programs is that it is difficult to teach. Students without professional

programming experience seem unable to appreciate the importance of accurate and com-

plete specifications, planning and scheduling, test plans, good documentation, etc. We

James E. Burns is now with the School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA 30332.

Edward L. Robertson is with the Department of Computer Science, Indiana University,
Bloomington, Indiana 47405.

www.manaraa.com

encourage our students to obtain professional experience through internships, but these

opportunities are not available to all. Experience with a realistic group software devel

opment project in an academic environment can be a valuable part of an undergraduate

education in computer science. Unfortunately, it is difficult to find suitable projects and

to administer a course with many such projects. We have developed a pair of courses at

Indiana University which largely overcomes these difficulties. Although we make no claim

of producing full-fledged software engineers with these courses, we do feel that we convey

many of the skills deemed important by Mills [9].

Our key innovation is to use students in a graduate level software engineering course

(the supervisors course) as supervisors for teams of students producing a software product

as part of an undergraduate course (the project course). Our supervisors are analogous

to teaching assistants in a course at Carnegie-Mellon University described by Kant [6J.

However, our supervisors are also students who gain valuable experience pertinent to the

graduate course from their supervisory duties.

Project courses have been discussed as tools for teaching software engineering at least

since Horning and Wortman [5]. However, our projects are almost always drawn from

the business community, local government agencies, and University departments. This

presents some difficulties in administration of the course, but we feel that the problems

are more than outweighed by the benefits of dealing with real clients, who often have

ambiguous and changing needs. This inherently avoids some of the problems in teaching

software engineering to undergraduates which were pointed out by Shaw [13]. For other

experiences with courses using projects from real users, see Bolz and Jones[3], Lee and

Frankel [7], Oman [10J, Perkins and Beck [11], and Sanders [12].

The final distinction between our project course and most others with which we are

familiar is that our course is taught as a two semester sequence. This allows the time to

go through the full development cycle, including installation and evaluation, but omitting

231

www.manaraa.com

maintenance. It would be difficult to compress the course into a single semester while

continuing to use real projects, given the lack of experience that the students in the project

course have with software development by teams. A single semester course is feasible if

the students have extensive professional experience (see McKeeman [8]).

The next sections describe our experiences with the graduate course (Section II) and

project course (Section III) over the last four years. The final section gives our conclusions.

II. THE GRADUATE COURSE SEQUENCE

The Software Engineering Management course sequence has recently been added to

the graduate curriculum after being taught as a special topic for several years. Our course,

similar in objective to the Software Project Management course taught at the Wang Insti

tute [lJ, is a graduate level seminar with a limited enrollment (maximum fifteen, typically

twelve). Students are required to have taken the Information Systems sequence at Indi

ana or to have comparable (usually professional) project experience. Although we have

had occasional disappointments, most of the students admitted to the course are highly

motivated and do a good job.

A. Typical Seminar Content

The two semesters of the Software Engineering Management sequence are different

in structure and format. The first semester (three credit hours) includes, in addition to

supervisory duties, a traditional seminar with students taking turns leading the discussion.

The second semester (one credit hour) usually consists solely of supervising the completion

of projects.

Course materials for the first semester seminar are drawn from classical works and

current papers pertinent to the course. The specific materials covered vary from semester

to semester, but a typical reading list is given in Figure 1.

232

www.manaraa.com

Bab Software Configuration Management. Wayne A. Babich. Addison
Wesley, 1986.

Bau Software Engineering: An Advanced Course. F .L. Bauer, Ed.
Springer-Verlag, 1975.

Bro The Mythical Man-Month. F.P. Brooks. Addison-Wesley, 1975.

Boe Software Engineering Economics. B. Boehm. Prentice-Hall, 1981.

Dav Tools and Techniques for Structured Systems Analysis and Design.
W.S. Davis. Addison-Wesley, Reading, MA, 1983.

DeM Concise Notes on Software Engineering. Tom DeMarco. Yourdon
Press, 1979.

Fai Software Engineering Concepts. Richard Fairley. McGraw-Hill,
1985.

Kin Current Practices in Software Development. D. King. Yourdon
Press, New York, 1984.

Kop Software Reliability. H. Kopetz. Macmillan Press, 1979.
Met Managing a Programming Project. P.W. Metzger. Prentice-Hall,

Englewood Cliffs, NJ, 1973.

PW In Search of Excellence. Peters and Waterman. Warner, 1982.

Shn Software Psychology. B. Shneiderman. Winthrop, 1981.

Sho Software Engineering: Design/Reliability/Management. M.L. Shooman.
McGraw-Hill, 1983.

Som Software Engineering. Second Edition. I. Sommerville. Addison
Wesley, Reading, MA, 1985.

Wei The Psychology of Computer Programming. G.M. Weinberg. Van
Nostrand Reinhold, 1971.

Fig. 1. Typical Reading List for Software Engineering Management.

A syllabus similar to Figure 2 is distributed and students are assigned to lead specific

class discussions. A substantial portion of a student's grade depends on the quality of the

seminars they lead and their degree of participation in the seminar. The ordering of the

material in the seminar is designed to complement the companion project course. E.g.,

management issues are discussed before the software life cycle because the supervisors

earliest responsibilities are concerned with selecting teams and projects. Note that some

classes are devoted explicitly to discussion of project status, but every class meeting devotes

at least a few minutes to the projects.

233

www.manaraa.com

Week Reading Topics
1 Som 1. Fai 1. Introduction to Software Engi-

neering.
2 Som 10,11. Fai 2. Wei 4,5. Managing people and projects.

Bro 3,4. Shn.
3 Dav B,C,Q. Kin 5,6. System Life Cycle. Interview-

ing techniques. Feasibility
studies.

4 Som 2. Fai 4. Requirements definition. Out-
side speaker.

5 Dav G. Fai 3. Sho 6.4. Cost/benefit analysis.
Boe.

6 Dav D,E,L. Som 4.1.1. Data flow diagrams and data
Sho 2.5,6.5. dictionaries. Scheduling

7 Som 3. Fai 5. Dav H,I,K. Software design. Specification
techniques: HIPO, pseudo-
code, Warnier-Orr.

8 Dav N. Som 9. Interface design. Outside
speaker.

9 Som 8-8.5. Sho 6.6.2. Documentation. Outside
Bau 4.B. speaker.

10 Discussion of Requirement Def-
inition Documents. Outside
speaker.

11 Som 2.6.1. Current papers. Prototyping. Project review.
12 Som 3,4. Dav F ,M. Physical design, systems

flowcharts, file design, modu-
larizing.

13 Som 5,7. Sho 2,4. Programming design; imple-
mentation issues. Testing, de-
bugging and validation.

14 PW Final discussion of projects.

Fig. 2. Typical Syllabus for Software Engineering Management

B. Outside Speakers

Several notations of outside speaker appear in the syllabus. We have been fortunate to

have had four or more visitors from industry in each offering of the seminar. The visitors

are usually from firms that hire our graduates and feel that such contact is mutually

beneficial. Often, the visitors are former students, some of whom have taken one or both

234

www.manaraa.com

of the courses described here. Talking with working practitioners enlivens the seminar and

emphasizes the importance of the material. The students have been very positive about

this feature of the course, and we strongly encourage its use.

c. Supervision Responsibilities

In addition to the seminar, the students have substantial responsibilities as supervisors

for the student teams in the project course. The supervisors act as advisors to the teams;

since they have been through a similar experience, their advice is usually valuable and

often (but not always) heeded. Another responsibility of the supervisors is to monitor and

report team activities. They provide early warning before milestones are missed so that

remedial action can be taken.

To invest the supervisors with the appropriate level of authority, it is imperative

that their position be made clear to the students in the project course. In a professional

situation, a supervisor achieves authority with the power to hire or fire, promote or demote,

etc. Since the only ultimate authority in an academic class rests with the final grade, the

project course students might ignore the advice and demands of supervisors if there is no

grade relevance. We emphasize the importance of the supervisors by making it clear that

the supervisors have a significant input into final project grades and by requiring that all

deliverables be turned in to the supervisors rather than the instructors. We have found

that it is valuable to stress the authority of the supervisors and have devised mechanism

(described below) to enhance this authority.

D. Evaluation of Supervisors

Because the graduate course enrollment is small, our grading policy has been informal.

We evaluate the students both on their participation in the seminar portion of the course

and on their performance as supervisors. (There are no formal examinations.) They are

judged somewhat on the basis of the success of the project, but the variability in projects

235

www.manaraa.com

makes their behavior relative to their particular circumstances more important. We seek

comments from students and clients in judging a supervisor's ability, and the supervisors

are aware of this.

III. THE PROJECT COURSE SEQUENCE

The Information Systems course sequence has two major components, one based on

traditional class work (lectures, exams, homework, etc.) and the other on a major team

project. The lecture component covers file media (corresponding to CS 5 of Curriculum 78

[2]) during the first semester and database systems (corresponding to CS 11) during the

second. The team project component, which is the focus of this paper, serves the goals of

CS 14 of Curriculum 78, although it is not taught as a separate course. Both semesters in

the sequence carry four hours of credit (recently raised from three).

Information Systems is nominally a senior level course sequence, but a number of

juniors and graduate students are usual. (A mixture of backgrounds and maturities is

educationally beneficial.) Normally, two sections are offered with a maximum enrollment

of 50 students each. We expect the students to have had exposure to several high level

languages with substantial experience and skill in at least one. Although programming

assignments based on the lecture material are often given, our concerned here is with the

course project, which spans both semesters.

Projects from real users are not commonly assigned as part of an academic course

because of difficulties in finding suitable projects, problems with organizing teams, diffi

culties in monitoring, and inadequacies of the academic reward mechanisms. Although we

cannot claim to have a foolproof method for handling team projects, our techniques do

provide decent feedback and monitoring with a tolerable administrative load.

A. Finding Projects

Although it is possible to use internally generated projects, there are many difficulties.

236

www.manaraa.com

IT all teams are given the same project the adminstrative burden is reduced, but it is nearly

impossible to assure that all teams work independently. IT distinct projects are assigned

to the teams, then much time will be spent in clarifying the design of each project. We

recommend instead that projects be solicited from interested users in the community. We

have had no difficulty in soliciting projects from large and small businesses, government

agencies, charitable organizations, as well as university departments.

On the first day of class, the students are assigned to find and report on a possible

project. (We usually have a number of leads which can be made available to students who

request help.) We encourage students to look for projects which will be appropriate in scope

and content. (Because the project is part of the Information Systems course, we require

that projects include development of a system for maintaining and accessing a data base.)

Students are given two weeks to find a project and write a two page description. Those

who are unable to find a project are asked to report on the current status of projects from

previous years or to write a short report on an article selected from a software engineering

journal.

We have generally had good luck in finding enough suitable projects. In the 1985-1986

school year, over fifty projects were suggested by the ninety students in the two sections.

Of these, ten were rejected immediately because they did not satisfy our requirement

relative to Information Systems or because the client was not located in the vicinity of

the University. (From past experience, we have found that the chances for a successful

project are severely reduced if the entire team does not have ready access to the client.)

For 90 students, 13 to 18 projects are desired, so having 40 allowed selection of the most

appropriate projects.

Maintaining good relations with the clients is important. The client must be aware of

the time and other resources that will be required for the project and of the possibility that

the project will fail. It is important to emphasize that maintenance will not be provided.

237

www.manaraa.com

(H a client does have a problem after the end of the course, we try to find students who

are willing and able, perhaps for a fee, to make changes or fix errors. However, we cannot

guarantee this service.) We depend on the supervisors to make sure that clients are aware

of the responsibilities and liabilities entailed.

B. Assigning Teams

A professional manager usually knows something about the strengths and weaknesses

of his staff and how well individuals work together. Because of the time constraints of an

academic course, team assignments must be made before the instructor has much informa

tion about the students as individuals. (Teams are usually assigned in the fourth week.)

We evaluate programming skill from a pre-test given on the first day of class (the pre-test

has no affect on grading) and writing skill from the project proposals and alternative writ

ing assignments. This helps us to balance skills across the different teams, but it doesn't

help with personality incompatibility problems.

Classes are divided into groups of approximately fifteen students, with approximately

the same number of skilled programmers and writers in each, as determined by the pre-test

and writing samples. Supervisors are to become familiar with all the individuals in one of

the groups. They then assist in choosing teams of four to seven students on the basis of

personalities as well as skills. A team with three students is minimal if the students are

to learn the appropriate lessons about working in groups, but larger teams are preferred

because of attrition. Seven is the maximum size since a larger group would probably need

some internal management structure. H a very large project is undertaken, it would be best

to partition it into smaller subprojects and use the supervisors to coordinate the efforts of

the teams.

C. Monitoring Progress

Because it is easy for a project to get into major trouble before the instructor is aware

238

www.manaraa.com

that anything is wrong, we depend on the supervisors to keep in close contact with their

teams. The supervisors are expected to help the teams overcome their problems and to

keep the instructors informed of project status.

D. Milestones

As a standard against which to measure progress, we use a set of milestones with fixed

due dates. Of course, individual projects can vary somewhat from the ideal schedule, so

the supervisors are allowed some variance.

The milestones shown in Figure 3 correspond to our own version of the software life

cycle, tailored to the needs of the course. An extensive handout describes what is required

(or each milestone. Here, we give only a brief description of the milestones and explain

how they interact with the administration of the course.

Milestone Semester Week Due Description

0 First 2 Project Proposal.
1 First 4 Feasibility Study.
2 First 8 Requirements Definition and Pre-

liminary Project Plan.
3 First 14 Logical Design and Test Plan.
4 Second 3 Physical Design.
5 Second 7 Implementation.
6 Second 10 Testing Completed.
7 Second 13 Installation.
S Second 14 Post Mortem.

Fig. 3. Project Milestones.

The Project Proposal is a very brief document used to make a preliminary judgement

on the appropriateness of a suggested project. The Feasibility Study gives a more in-depth

look at the need for the project and the resources required. One purpose of the Feasibility

Study is to assess the commitment of the client toward the project, since experience has

shown that this is a strong indicator of project success. After considering the Feasibility

239

www.manaraa.com

Studies carefully, the supervisors in consultation with the instructors decide which projects

should continue. Then teams are selected and assigned to projects.

The Requirements Definition is the first substantial piece of documentation produced

by the teams. It must be approved by the client before the project can continue. We

also require a Preliminary Project Plan, which include a schedule for meeting the future

milestones. Although the students are unlikely to produce an accurate schedule, we feel

they benefit from their errors in planning.

The final milestone of the first semester is the Logical Design, which is supposed to

specify precisely what the product will do to satisfy the Requirements Definition, but

not say how the product will be built. We encourage supervisors to require early drafts

of designs and to give substantial criticism. Having a predefined point during the project

when the Logical Design must be completed has presented minimal difficulties. The Logical

Design document and an in-class presentation of the design are the primary basis for the

project grade in the first semester.

The deadline for the Physical Design milestone comes early in the second semester.

(Preliminary work is done on the Physical Design in the first semester.) This detailed

design should give all the design decisions necessary for project implementation.

The Implementation is deemed complete when 100% of the coding has been compiled

without syntax errors. The Testing milestone is met when the error-free software has

been demonstrated to the supervisor. Of all the milestones, these are the most fluid.

Supervisors have great discretion in adjusting these due dates for the individual projects.

The objective is to deliver the final product on time; the individual milestones merely assist

in this process.

Installation is complete when the final software and all its documentation (user's

guide, training manual, programmer's guide, etc.) has been delivered to the client and the

client has received appropriate training. Verification of installation is the responsibility

240

www.manaraa.com

of the supervisors, but the instructors try to attend an on-site demonstration of the final

product. The instructors also try to contact the client during the final two weeks between

Installation and the end of the course to determine client satisfaction directly.

The final milestone, Post Mortem, consists of an in-class presentation and a brief doc

ument describing the team's experiences during the project. Its purpose is to contemplate

what happened during the project, what went wrong, and how problems were overcome.

We encourage the students to suggest ways that problems could be avoided in the future.

The in-class presentations are important so that the class as a whole can benefit from the

experiences of all the teams.

There is an inevitable and unfortunate conflict between the success of the team project

and the value of the learning experience. A team is likely to do better if members can

specialize in what they do best. However, this would deprive some students of participating

in coding and debugging, while others would never do documentation. The milestone

approach helps mitigate this problem, since it forces the entire team to focus on one

aspect or another at different times.

E. Grading

It is always difficult to assign individual credit for a group project. Our solution is

to grade the projects first, then to decide on grades for team members. Projects grades

are based primarily on the written documentation provided with the delivered product,

class presentations, product demonstrations, client feedback, and supervisor recommenda

tions. Since the project grade is typically 40% of the course grade, the students are highly

motivated to do well.

Students are advised early that they will be evaluated by their fellow team members.

Each team member provides a written report explaining what was done (or not done) by

each member and a numeric evaluation in which a fixed number of points are distributed

241

www.manaraa.com

among the team. This information and supervisor evaluations are carefully considered in

assigning grades for individuals. The most common occurrence is that all students in a

team receive the same grade, but it is not unusual for one student to receive an 'A' or a

'C' while the other members receive 'B's.

Occasionally, one or two students in a class seem to be unable or unwilling to work

on a team project. In the past, we have used the threat of a poor grade as a means to

encourage participation. Unfortunately, it has still been necessary to assign a grade of 'F'

occasionally. Although this might punish the offending student sufficiently, it does not

compensate for the additional difficulties encountered by the rest of the team. A more

successful strategy has been used in recent years. We give the supervisor the option of

firing the student from the team. The fired student could appeal to another team for

admittance; if this plea fails, the student would be assigned an individual project with a

maximum grade of 'B.' We have not yet needed to use the firing mechanism and have had

no grades of 'F' on projects since it was in place. We are not sure whether the threat of

firing or luck was responsible for the improved situation.

F. Results/rom the 1985-1986 Offering

After evaluation of the feasibility studies by the instructors and supervisors, we se

lected twenty projects (out of forty) to go forward. In retrospect, we should have selected

fewer projects, for the average team size soon dropped below five when several students

dropped late in the course.

Two of the twenty projects were cancelled at the end of the first semester. One client

was unable to provide the necessary access to a time-shared computer because of security

concerns at the corporate (non-local) level. In the other case, access to the client's micro

computer system was inadequate for development, and no alternate system was available.

Of the remaining eighteen projects, all but four appear to be completely success-

242

www.manaraa.com

fui. Two of the unsuccessful projects were not completed on time; grades were withheld

until completion. The other two unsuccessful projects were inadequate for the intended

purposes. In both cases, the projects suffered because of unavailability of the client.

Most of the projects were well received by the clients. The typical project was devel

oped on a microcomputer using commercially available database tools. While these types

of projects are not good models for large scale product development, they do provide valid

experience in working with a team to develop software and in interacting with a real client.

IV. CONCLUSIONS

Our confidence in the validity of our approach is high because of the positive feedback

we have had from the employers who have hired veterans of both the project course and

the graduate course. There is keen competition for admittance to the project course, at

least partly because student perceive that it is an asset when looking for a job.

While the instructors certainly benefit from the supervision performed by the students

in the graduate course, the students can benefit even more. We have had many unsolicited

comments indicating that the Software Engineering Management sequence has been very

valuable to our graduates. The supervisory part of the course is essential in conveying the

relevance of the material discussed in the seminar.

The use of students from the graduate course as supervisors in the project course

augments and enrichs both courses and makes it feasible to offer real project experience in

a large, undergraduate course. We would be interested in hearing from others who have

had experiences with similar courses or who are contemplating offering such courses.

ACKNOWLEDGMENT

We wish to thank all of the students who have participated in the Information Systems

and Software Engineering Management course sequences at Indiana University over the

243

www.manaraa.com

last four years. Their criticism and participation helped to develop a much better pair

of courses. We also want to thank the individuals from outside Indiana University for

participating in our graduate seminar and their employers for allowing them to come. A

special thanks goes to Sid Kitchel, who greatly assisted with the administration of both

course sequence in the 1985-1986 school year. Finally, we wish to thank the editor and

the referees for their comments.

REFERENCES

[1] M. Ardis, J. Bouhana, R. Fairley, S. Gerhart, N. Martin, and W. McKeeman, "Core
course documentation: Master's degree program in software engineering," Technical
Report TR-85-17, School of Information Technology, Wang Institute of Graduate
Studies, Sep. 1985, 39 pp.

[2] R.H. Austing, B.H. Barnes, D.T. Bonnette, G.L. Engel, and G. Stokes, (eds.), "Cur
riculum 78: Recommendations for the undergraduate program in computer science-
A report of the ACM Curriculum Committee on Computer Science," Comm. ACM,
vol. 22, no. 3, pp. 147-165, Mar. 1979.

[3] R.E. Bolz and L.G. Jones, "A realistic, two-course sequence in large scale software
engineering," SIGCSE Bulletin, vol. 15, no. 1, pp. 21-24, Feb. 1983.

[4] R. Fairley, "The role of academe in software engineering education," in Proc. 1986
ACM Fourteenth Annual Computer Science Conference, Cincinnati, Ohio, pp. 39-
52, Feb. 1986. (Also available as Technical Report TR-85-19, School of Information
Technology, Wang Institute of Graduate Studies, Oct. 1985.)

[5] J.J. Horning and D.B. Wortman, "Software hut: A computer program engineering
project in the form of a game," IEEE TI-ans. Software Eng., vol. SE-3, no. 4, pp. 325-
330, July 1977.

[6] E. Kant, "A semester course in software engineering," ACM Software Engineering
Notes, vol. 6, no. 4, pp. 52-76, Aug. 1981.

[7] K.Y. Lee and E.C. Frankel, "Real-life software projects as software engineering lab
oratory exercises," ACM Software Engineering Notes, vol. 8, no. 3, pp. 39-43, July

1983.

[8] W.M. McKeeman, "Experience with a software engineering project course," Technical
Report TR-86-01, School of Information Technology, Wang Institute of Graduate

Studies, Jan. 1986, 17 pp.

244

www.manaraa.com

[9] H.D. Mills, "Software engineering education," in H.D. Mills (ed.), Software Produc

tivity, Boston, MA: Little, Brown and Company, 1983, pp. 251-264.

[10] P.W. Oman, Jr., "Software engineering practicums: A case study of a senior capstone

sequence," SIGCSE Bulletin, vol. 18, no. 2, pp. 53-57, June 1986.

[11] T.E. Perkins and L.L. Beck, "A project-oriented undergraduate course sequence in
software engineering," SIGCSE Bulletin, vol. 12, no. 1, pp. 32-39, Feb. 1980.

[12] D. Sanders, "Managing and evaluating students in a directed project course," SIGCSE
Bulletin, vol. 16, no. 1, pp. 15-25, Feb. 1984.

[13] M. Shaw, "Making software engineering issues real to undergraduates," in Wasserman,

A.I., and Freeman, P. (eds.), Software Engineering Education: Needs and Objectives.
New York: Springer-Verlag, 1976, pp. 104-107.

245

www.manaraa.com

The System Factory Approach to
Software Engineering Education 1

Walt Scacchl
Computer Science Dept.

University of Southern California
Los Angeles, CA 90089-0782

Abstract

The System Factory project seeks to Investigate the problems of large-scale software

engineering through a combine effort in research, development and education. This

report describes the System Factory approach to software engineering education as

developed and practiced at USC. It describes the genesis and history of the System

Factory project, the SF approach to software engineering, our experiences in softwre

technology transfer, and concludes with some observations and potentials for large-scale

software engineering projects in academic settings. Central to the SF approach is a joint

focus on three key determinants of the outcomes of large-scale software development:

the products developed, the process through the products are developed, and the

production setting where the process of creating products occurs. Accordingly, we

outline the software tools we employ, the techniques we developed for engineering

software systems throughout their life cycle, and the strategies for managing large

software engineering projects we employ.

1. Introduction

How does large-scale software development (LSSD) occur? What can we learn from

conducting experimental studies in LSSD? Can we teach and practice LSSD in an

academic computing environment and Institutional setting? Can we develop substantial

lTh. Sylt.m F.ctory proj.ct hes b .. n .upport.d ov.r the y •• r. through contr.ct., gr.nt., or gift. from the
USC F.culty R •••• rch Innov.tion Fund. AT&T Inform.tion Sylt.m., Carn.gie Group Inc .• Hughe. R.d.r Sy.t.ms
Group, IBM through the Socr.t.. Proj.ct .t USC, Syst.m D.v.lopm.nt Found.tion, .nd TRW Syst.m.
Enlline.rinll end D.v.lopm.nt Divi.ion. Addition.1 r •••• rch .upport w.. provid.d by DARPA contract MDA
903-ll-C-0331 to the Information Sci.nc •• In.titut •• t USC. Fin.lly, more then 300 gr.duet •• tud.nt. in
comput.r .ci.nc. at USC h.v •• I.cted to p.rticipat. in the Syst.m Factory proj.ct .inc. 1981. Without th.ir
p.rticipation .nd commitm.nt to succe.s, this proj.ct would not occur. W •• r. truly gr.t.ful for all of th.ir
.upport.

www.manaraa.com

and interesting LSS systems in an academic setting? Can we follow both an evolutionary

and revolutionary approach to LSSD [317 What sort of tools, techniques, and project

management strategies should we implement to support LSSD? Can we develop LSS

systems with tools, techniques, and strategies that can be reused or distributed to other

academic/industrial research settings? Can we practice software technology transfer and

transition? These are fundamental questions in the development of large-scale software

systems with a large staff in an academic setting. Therefore, our purpose is to describe

our approach to investigating these questions and concerns through a long-term

research, development, and education project at USC we call the System Factory.

Through six years of work in the System Factory project. we have produced and

documented a variety of results and products. These outcomes include both

technological and organizational artifacts, and numerous research contributions. We have

produced an inventory of reusable software components that we can configure

into different application systems or environments [50, 30, 52, 44, 17, 55, 561. Each of

these components has a record of formal specifications and narrative descriptions that

characterize their development life cycle. We have produced a set of techniques for

eng ineer ing the life cycle of software applications and environments [57, 451.

These techniques primarily address how to articulate and transform software system

specifications into concrete source code realizations, whether employing existing software

components, or prototyping entirely new application systems. We have produced a set of

strategies for managing LSSE projects that can be specialized to specific

organizational and technological arrangements [36, 61, 53, 54, 59, 71. These strategies

employ policies for managing LSSD projects that we have observed realize substantial

improvement in software productivity and quality. We are also continuing our

investigation to develop a paradigm for flexible manufacture of large

software sgstems [20]. and articulating a knowledge base of software

technology transfer know-how [49, 581 based upon our research of effective

transfer and transition practices.

Our simultaneous focus on system engineering activities, and organizational patterns

and processes in which they occur, is the unique aspect of our approach. It also

represents, in our view, the best opportunity for realizing substantial improvements in

software productivity, quality, and long-term cost reduction. We believe that our research

results and products increasingly substantiate this.

Overall, this report is about the System Factory (SF) project and its approach to

interrelating software engineering research, development, and education. This

interrelationship is a recurring theme in the organization of this report. In the next

247

www.manaraa.com

section, we present an overview of other efforts that investigate research topics in

software engineering through project courses. This serves as a point of departure into the

SF itself. We begin our discussion of the SF in terms of its intellectual roots and project

history. This is followed by a description of the products, process, and production setting

that characterize the SF approach to software engineering research and education. This

section describes the computer-aided software engineering environment of the SF, the

software life cycle engineering techniques employed as part of the SF software

production process, and the strategies we use for managing a large, long-term software

engineering project in our institutional setting. We then turn to examine our experiences

with SF technology transfer. Finally, we close with some observations about the SF

approach to software engineering, as well as the potential for replicating the SF approach

in other academic or industrial settings.

2. Related Efforts

The SF follows from a long standing approach to experimental investigations in the

practice of software engineering education. The basis of this approach is to mobilize

software engineering students in an academic setting to perform software development

projects under the control and guidance of a faculty member [69, 25]. This ·is software

engineering education via hands-on experimentation with selected development tools or

techniques. What distinguishes this approach from traditional classroom training is the

faculty researcher's commitment to conduct an experimental research evaluation of a new

software technology through some sort of comparative study. In simple terms, an

interesting software concept or technology is selected, and students are grouped into

clusters and directed to develop some software product(s) with this technology. The

technology thus serves as the dependent variable, while the student clusters or (attributes

of) the products produced as the independent, comparison variable.

Among the classic investigations, Wasserman and Freeman [69J were among the first to

identify collective motivation and descriptions of software development projects in

academic or industrial training settings. Horning and Wortman [28J at UToronto

introduced one of the early innovations in software education by their explicit structuring

of groups of students into 'software huts' that were motivated to produce a quality

software system by economic incentives. This project-as-game approach was an attempt

to replicate certain features of the real-world of competitive, commercial software

development houses. B85i11 and colleagues at UMaryland [6J began conducting controlled

experiments that sought to statistically compare the effectiveness of different software

development techniques as employed by student groups. Barry Boehm, a central figure in

the emergence of software engineering, also began conducting small-scale experiments

248

www.manaraa.com

in software engineering in the late 1970's first at USC, and then at UCLA [10, 12]. These

studies sought to evaluate the effectiveness of certain software development techniques

(e.g., structured programming, specification versus prototyping) with 4-8 teams of

students developing the same system. While his studies produced frequently cited

results, Boehm readily acknowledges they do not empirically prove the efficacy of

selected techniques over one another.

Perhaps motivated by the precedent of these studies, or by the perponderance of faculty

researchers assigned to teach the growing student enrollments of software engineering

courses, we witnessed a notable growth in software researchers' intermix of their

teaching and research interests. Selby, Basili, and Baker [63] at UMaryland report the

results of Selby's dissertation study of a carefully desi9ned experiment to evaluate the

effectiveness of their CLEAN ROOM approach to software development and off-line,

statistically based software testing. In another quantitative experiment, Avizlenis and Kelly

[1] at UCLA, and Knight and Leveson [37] at UVirginia and UClrvine report their findings

on the relability of N-version programs developed from a single specification by

programmers (students) with comparable skill levels. As these studies are very similar

though independently conducted, their results are comparable, and the differences In

interpreting the experimental results notable. McKeeman and colleagues [42] report on

their experiences at the Wang Institute in conducting a number of software engineering

projects between 1982-1985 where their objective was to simulate Industrial software

development organization, methods, and products. Berzins, Gray, and Naumann [9] at

UMinnesota report on their project-oriented case studies from 1981-1985 on the use of

process and data abstractions in developing software systems. They characterize their

effort as successful and replicable in other universities, though successful replication may

require access to the kind of software tools they employed. Interest in research-oriented

courses is prevalent in other areas of computer science including data structures and

algorithms [15]. networks and distributed systems [64]. and CAl courseware.[5]. Finally,

the Software Engineering Institute [26, 25] at CMU has recently taken responsibility for

developing graduate curriculum materials, researching new software technologies, and

facilitating the transfer of the products of these endeavors between universities and

industrial firms.

In summary, a number of observations can be drawn from the research efforts cited

above:

• case studies and controlled experiments that evaluate software engineering
tools and techniques are possible, publishable, and popular in university
settings.

249

www.manaraa.com

* educational projects can replicate many (not all) features of software
development practices found in industry in a classroom laboratory.

* nearly all university-based project courses focus on the development of
small-scale software systems (typically 500-5,000 lines of source code)
constructed by teams of 2-7 students utilizing modest but increasingly
sophisticated software technologies.

However, other challenges of software engineering are yet to be addressed by research

project courses.

Many universities are implementing complex campus-wide computing arrangements

built from networks of personal computers, workstations, and special-purpose processors

(e.g., supercomputers) [68]. This means that students are being exposed to new

computing environments, multi-vendor systems, and computing support staffs that are

frequently changing. A challenge here for software engineering faculty researchers is

how to organize a software development project that utilizes complex computing

arrangements in order to develop software systems that operate in such a setting. This

suggests that a large team of students (15-60) must be organized to engineer a LSS

system (10,000 to > 100,000 lines of code), but within the usual constraints of an

academic setting. Typical constraints include little or no discretionary budget, project

schedules delimited by academic terms, shared and congested computing resources,

annual staff turnover, grading voluminous project deliverables, little or no dedicated

project support staff, etc. Such opportunities and constraints mean that new project forms

must be investigated, and new software development technologies used (and reused).

This is the challange we faced and chose to investigate through the development, use,

and evolution of a software engineering environment in a software factory

[14, 29, 41, 40, 66, 55].

3. Genesis and History of the System Factory Project

The SF is an investigation into LSSD with large staff in an academic setting begun in

1981. At that time, few studies of software engineering project courses or LSSD projects

had been published. But a growing number of studies of the evolution of new computing

technologies and large computing systems in complex organizational settings were

available [33, 34, 35, 49, 36]. These studies indicated that the development and use of

large systems was plagued by a background of recurring dilemmas that diminished the

potential benefits, decreased productivity, and raised the cost of system development and

use. These studies found that the structure and function of computing systems was

inextricably bound (or ·webbed") to the organizational settings where they were produced

and consumed, and to the jobs, careers, and circumstantial interests of the people who

250

www.manaraa.com

animated them. This meant that if we were to engage in a lSSD project, we needed to

investigate not only the role of new software tools and techniques, but also how the

project's setting would interact with the system products being developed, how they

would be developed, and who would be doing the development work. As such, if the

interaction was benign, then the new software technology might be most effective. On

the other hand, if the interaction was substantial, then we could expect to encounter

problematic situations that could decrease development staff productivity, reduce product

quality, or otherwise raise the cost of LSSD.

The ideal candidate for such a study would therefore be a multi-year, lSSD project that

would require a complex organization of people and computing resources situated within

some larger institutional context. A long-term project would assure a dynamic project

organization in terms of staff turnover and innovations in local computing faCilities. A

LSSD project would inherently require a large staff, extensive use of available computing

resources, schedules, production plans, administrative controls, and software engineering

tools and techniques. The larger institutional context would create a marketplace of

occupational and career contingencies for project staff, of external administrative units to

manage base computing facilities and provide support staff, of extramural research and

development funds, and of computing system vendors to provide upgrades to local

computing facilities. Finally, the LSS system to be developed should be unfamiliar to

allow us to experience the uncertainty in the final shape of things to come, so that we

could try, fail, learn, and manage as we go. The SF would therefore be an experiment

that represents a complex, real-world LSSD project based in an academic setting.

3.1. Initial Conditions of the SF

Our objective was to mobilize available staff and computing resources to develop a

language-independent software engineering environment (LISEE) [50] within schedule,

budget, and computing resource constraints. The LISEE would initially be the LSS

software we would develop in the SF.2 If successful, we could in principle then employ

the LISEE tool ensemble in other LSSD projects.

In January 1981, we started with a development staff of 57 graduate software

engineering students who elected to take a 15-week semester course in LSSD. These

students were competent small-scale Pascal programmers possessing an undergraduate

degree in computer science or the equivalent, but generally assumed to lack prior skills in

2This LISEE eventually evolved into the SF's current software engineering environment described in 8 litter
section.

251

www.manaraa.com

LSSD. Students were expected to commit 10-12 hours per week to this course. Since

this was a course televised from USC to local industrial settings, this meant there was a

partial geographic distribution of students in 5 different remote TV centers in addition to

the majority of in-house students. There was a visible ethnic diversity of students

represented by at least 10 different cultural or national backgrounds. At least one-third of

the students spoke English as a second language. All software development was to be

performed on a centralized, time-shared DECsystem-10 mainframe system with minimal

programming support environment. There was a firm schedule for software delivery (end

of the semester deadline is absolute) and budget (no discretionary funds available) in

place. We then started with a modestly articulated model of software engineering

technology (as of 1981) as found through a comprehensive literature review and reading

list 12 pages long, with about 200 Citations, prepared by the author.

Following a number of introductory lectures, we provided the staff with the software

technology reading list partitioned into general reference materials and potential LISEE

components. This initiated the beginning of the project. Next, we randomly assigned small

number of students to review selected reference materials and become knowledgeable

about one domain of software tools pertinent to the LISEE. Example domains included

structure-oriented editors, testing systems, database management systems, user

interfaces, etc. [50]. We then provided the staff with initial davelopment requirements in

the form of a conceptual LISEE architecture. This architecture served as the basis for

dividing project staff into project teams of 2-7 cooperating students. Ten teams were

established, five in-house and one at each remote site. Each team was then responsible

for developing one component tool of the LISEE. We followed by providing the staff with

techniques for developing the LISEE. These techniques addressed the the conventional

stages of the system life cycle: requirements analysis, functional specification,

architectural design, detailed design, implementation and integration, testing, user

documentation, and maintenance. Basic background in these techniques was derived from

examples available in the literature at that time (cf. [53]). Last, we provided the staff with

background lectures on the organizational problems and strategies of LSSD as derived

and transformed from the previously cited studies of the consumption of computing

systems in complex settings.

Actual LISEE development was scheduled for eight weeks, following seven weeks ot

introductory lectures and background preparation (readings, class discussions, homework

assignments, exams, and informal out-ot-class discussions). The project's development

was scheduled to reiterate the techniques, problems, and strategies for performing one

system development life cycle stage each week. while staff performed that lite cycle

activity [53]. Thus we could use class time to discuss problems that different teams

252

www.manaraa.com

encountered as examples during that system development life cycle stage. Of course, we

did not know if this was reasonable or if it would work overall. But we were there to

learn through success or failure. After the project's eight week development, all ten

components of the LISEE were prototyped, demonstrated, documented, and delivered by

the staff of then 53 graduate students.

3.2. Outcomes and Implications of the Initial SF Experience

Version 1 of the LISEE represented 30K+ lines of Pascal code operating on a TOPS-l0

based DECsystem-l0 mainframe. The tools developed ranged in size from roughly 1500

to 4000 lines of code. All LISEE components were demonstrated to be operational,

although there was variation in the quality and amount of system development work

completed by the different SF teams. Each LISEE tool provided an operational interface or

stub for interconnecting to at least one other component in the LISEE architecture. This

LISEE was clearly not production-quality, but our objective in the SF experiment was to

demonstrate that a LSS system of the complexity of a LISEE could be prototyped by a

large staff in an academic setting in a relatively short time.

Each team submitted project team documentation that recorded their work completed in

each system life cycle stage. There were eight chapters to each team's documentation,

one chapter per life cycle stage. On average, each team delivered 50-100 pages of

system life cycle documentation per person. That is not to suggest that every person

produced that volume of documentation, but rather that a two-person team might

produce 150 page project document, while a five person team might produce a 300 page

project document. In total, about 3000 pages of LISEE development life cycle

documentation were delivered.

Overall, the general feeling among all project participants was that the project was a

success, and that most students valued the software tools and project documentation

they developed. For a number of students, this was the most substantial and best

engineered piece of software they had yet developed, and the largest group project in

which they had ever participated.

3.3. SF Iterations: 1982-1986+

Although the initial SF project was successful, maybe we were just lucky or misleading

ourselves. That is, could the experiment be replicated with an entirely different staff and

produce comparable results? In order to answer this question, we decided to repeat the

experiment with the same objectives but with entirely new staff and same computing

environment. However, this time a smaller staff of 30 undergraduate students was

253

www.manaraa.com

employed using same computing facilities as before, and same development techniques

and project management stretegles followed. Roughly comparable results were produced

in terms of a smaller, less ambitious LISEE and related documentation.3 This repetition of

the SF experiment indicated to us that the SF concept was sufficiently viable for further

experimentation, refinement, and development. Since then, we have repeated the SF

experiment in an iterative manner, incorporating new refinements, insights, and

technological enhancements. Some highlights follow.

In the next iteration, we chose to utilize the first generation SF documentation and

software as prototype available for reuse if desired by team members. We revised the

basic LISEE architecture, the functional capabilities Of its tools, the software life cycle

development techniques, and the project management strategies to better accomodate

defiencies observed in the initial Iteration. Each subsequent iteration would also give rise

to a revised set of tools and architecture, techniques, and strategies.4 Also, the

computing environment was upgraded to TOPS-20 operating system on the same

computer system. This was not our decision, but it happened in our work setting, thus we

had to transition to it in order to continue.

Next iteration, we were given another opportunity to migrate to a new computing

environment, this time to a VAX-VMS system. We also decided to migrate the LISEE from

Pascal to C, and to expand the scope of the LISEE to support experiments in VlSI circuit

design [51, 30, 521 However, as our experience, teaching materials, and software tools

expanded, we came to find the seven week introduction, and eight week development

schedule too confining. The choice we opted to Implement was to expand the one

semester course into a two semester, academic year length course. This would allow us

to take more time and explore at greater levels of detail, the tools, techniques, and

strategies we were putting into practice. This also would be a good time to again

migrate, revise, and redevelop the LISEE (now called simply a SEE) in C to a VAX-750

running Unix 4.2bsd [55J. This migration then represented the next iteration. Finally, for

the current iteration, the SF was expanded to utilize a loosely coupled network of

heterogeneous computers. The SEE was continued in C++ on two VAX-Unix 4.3bsd

30f course this i, not a true replication of the original e"periment. But we felt this case study e"periment
wal a clo.e appro"imation of the firlt and therefore comparable.

4For eumple, the original LISEE required a relational data ba,e management Iystem to be u.ed a. a central
archive of project related information. Development of a RDBMS wa, then started and continued until the SF
migrated to a Uni" 4.2bsd environment where we were able to u.e the e"ilting Ingre. RDBMS. a 'Yltem more
capable than our.. Continuing development our the original SF ADBMS wa. than halted. and another new
software tool was added to the SEE for ongoing development.

254

www.manaraa.com

systems and two SUN-3 workstations all on a common LAN, as well as migrated to

operate on a separate network of AT&T 3B2 and 3B20 computers all running Unix System

V. A TI Explorer Lisp Machine was made available, as were a number of IBM-PCs running

MS-DOS. These latter machines were used for prototyping next generation knowledge

based SF tools, document preparation, development of small program modules, and

remote file transfer.

In sum, we refined and redeveloped the SF's tools, techniques, and strategies through

six iterations. In the course, we provided hands-on training with the development, use,

and evolution of the SF's technologies for more than 300 graduate students in total over

the six year period. We now turn to describe the SF approach as it now stands in terms

of the SEE, software life cycle development techniques, and project management

strategies we employ.

4. The System Factory Approach: Product, Process, and Setting

Central to the SF approach to software engineering is a joint focus on three key

determinants of the outcomes of LSSD: the products developed, the process through

which the products are developed, and the production setting where the process

creating the products occurs. The SF's products embody a technological structure and

function.s The software production process, whether organized according to a "waterfall

model" or prototyping-incremental development system life cycle must be planned,

staffed, directed, scheduled, budgeted, and controlled to accomodate smooth production

of the intended technological products by available staff. Formal software development

techniques may be used to further structure this process. The production process

therefore serves to structure the flow and transformation of organizational resources into

technological products and work arrangements.6 Finally, the production setting provides

the staff and resources that are mobilized according to organizational policies,

procedures, histories, incentives, and pressures in its marketplace to animate the process

of product manufacture. In particular, we find the organizational and technological

arrangements that support software production often have a profound affect in shaping

how software development occurs. For example, the base computing environment used

SThe SFs products include programs, doc:umentation, software development techniques and analyses,
application-domain knowledge. routines for SF use and evolution, strategies for managing LSSD. and people
trained and skilled in LSSD. In addition, a number of research publications have been produced. presented. and
disseminated.

6Elsewhere we refer this transformation of organizational resources into technology-based work
arrangements as ·packaging", and the ensemble of products a ·computing package" 135, 49. 36].

255

www.manaraa.com

in the SF was changed five times (once each project cycle) primarily due to actions of the

university's computing facility through their attempt to provide modern computing

services that are easier to sustain and operate. However, we find that many researchers

seem to ignore the importance of how idiosyncratic features of each setting uniquely

influence how computing resources are consumed, how software systems are produced,

and what products are produced.

Clearly there has been increasing attention directed in the software community as to

whether LSSD depends more upon the nature of the product or the process. However,

little attention is directed at the organizational setting where a particular group of people

must work together using available resources to develop software system products

according to some formal or ad hoc development process. Academic computer science

departments, computer system manufacturers, aerospace contractors, banks and insurance

companies, and national scientific laboratories represent some of the places where LSSD

occurs. Clearly there are differences across and within such settings in terms of the kinds

of software applications developed, development tools employed, computers and

operating systems utilized, programming languages primarily used, professional

background and skill level of the software developers, budget and development schedule

constraints, and so forth. As such, we find the influence of the organizational setting on

the products produced, the process through which they are produced, and the joint

influence of each on the other is fundamental [36, 53]. In our view, overlooking these

patterns of influence is thus a fundamental mistake in attempting to understand how

LSSD occurs.

This section therefore describes selected products, production process techniques, and

project management strategies used in the SF. After this, we then describe our

experiences in transferring these SF technologies to other organizational settings.

4.1. SF Product: A Large-Scale Software Engineering Environment

The SF's software engineering environment (SEE) is designed to support the computer

aided engineering of software systems or VLSI systems throughout their life cycle

[30, 51, 52, 55]. Our focus in this report is limited to large software systems. The SEE is

designed to support the family of languages that describe each life cycle activity by using

an appropriate set of language-directed tools that process them. For instance, one way

this is realized is by generating and configuring a set of language-directed tools that can

evaluate language-based system descriptions for consistency and completeness. Another

way is to generate and configure a set of tool components to serve as the base for

specifying, rapidly prototyping, and validating particular application systems. With these

objectives in mind, we built these SEE component tools on top of, and integrated with,

256

www.manaraa.com

the Unix operating system environment. The SEE tools constitute the SF's production

infrastructure of software machinery used for fabricating, analyzing, transforming, and

evolving software system descriptions. The following components are incorporated into

the SF SEE:

* Language-directed editor generator: utilizes formal language
specifications to produce a language-specific editing environment that detects
syntax errors and inconsistencies in type declarations and construct usage at
keystroke entry time. Lanugage-directed editors for software specification,
design, coding, and animation languages have been generated and put into to
use in the SF. It also constructs an abstract syntax tree and symbol table that
can be used as inputs to the testing system and Gist specification processor.
We have used this tool to rapidly construct a facility for generating formal
system specifications from table-structured input of narrative system
requirements. This was done by restructuring LDEG to accept object-oriented
(semantic network) specifications, thus becoming a kind of knowledge
directed editing environment (70).

.. Flow analyzer and testing system: performs static control flow and
dynamic data flow analysis of source code descriptions, produces augmented
source programs with probes for execution monitoring and debugging, and
provides a rule-based mechanism for generating test cases for software
modules interfaced to a debugger. This tool supports validation of a software
application's performance requirements. We intend to integrate this testing
system with the CMS to support a knowledge-based tester of multi-version
system configurations .

.. Configuration management system: (CMS) provides automated
mechanisms for controlling multi-version system descriptions (e.g.,
specifications and source code implementations), through use of a module
interface and interconnection definition language (NuMIL) and compiler
[44, 43]. The NuMIL language and processing environment are used to specify

the architectural configuration of new applications, or used to generate such a
specification for existing applications. These specifications coupled to their
source code implementations provide an appropriate medium for maintaining
large evolving software applications [44, 43]. This system is currently being
extended to support the design and configuration management of distributed,
real-time multi-processor systems. We also intend to further extend this
system to incorporate mechanisms for reasoning about alterations made to
the structure and function of software system configurations .

.. Window-based user interface and command processor: provides
a window-based command/she" processor, mail handler, and display manager
that other tools or application systems can use as their ·front end: We are
currently incorporating an additional mechanism for creating active display
devices (real-time gauges and digimeters).

257

www.manaraa.com

• Gist specification analgzer and simulator: provides a basic
facility for constructing, analyzing, querying, and functionally simulating
system specifications written in the Gist specification language [2, 17, 57]. We
intend to extend this facility to support mechanisms for explaining the
behavior of operational system specifications. These mechanisms are being
developed in conjunction with the FSD environment at USC/lSI [4].

• Document integration facilitg: (DIF) provides a facility for creating
and maintaining a multi-version electronic encyclopedia of system
documentation hypertext [71, 38]. This enables us to interrelate and trace
textual/graphic system documentation across all system life cycle activities
that can be uniformaly queried, browsed, revised, and archived. Life cycle
product descriptions for all SF SEE tools are currently included in the DIF
database archive. A new facility has been designed to help coordinate and
communicate to staff the modification of configured system components for
large development projects [31, 65]. We intend to extend DIF by integrating it
with the CMS to document multi-version system configurations, with SAG and
PPSS to support electronic project management documents, and VIZ to create
animated documents that visualize system features in-the-Iarge and in-the
small.

• Spreadsheet application generator: (SAG) provides a special
purpose environment for specifying and rapidly generating interactive
spreadsheet-like application programs. SAG has been used, for example, to
develop a modest decision support system (PEST) for developing software
cost estimation models and calculating computer system acquistion costs.
SAG is interfaced to a relational data base management system so that it can
utilize data bases created by other tools (e.g., PPSS). We are currently
experimenting with techniques for generating rule-based spreadsheet
applications [18]. as well as non-rectangular, n-dimensional, distributed, and
dynamically reconfigurable spreadsheet applications. Potential applications of
this kind include simulation of dynamic systems, cellular automata, distributed
intelligent system shells, and emulation of reconfigurable supercomputer
system architectures [27, 62].

• Project planning and scheduling sgstem: (PPSS) provides a rule
driven data base system for planning project schedules, work breakdown
structures, task precedence networks and diagrams, and their interdependence
(cf. [221). These mechanisms can be employed to establish and assess the
impact of changing requirements on a development project's budget, schedule,
and production plan. We are currently integrating the services of this system
into those provided by the PMSS.

• Knowledge-based project management support sgstem: (PMSS) a
knowledge-based software process support system (cf. [481) that incorporates
an operational model of the software life cycle processes embodied in KBSF
development techniques and project management strategies [60]. PMSS is a
kind of intelligent system that represents, simulates, and reasons about

258

www.manaraa.com

software development processes and production settings. The initial
demonstration version of PMSS was implemented by manually transforming
Gist specifications of selected software development subprocesses into an
OPS5 rule-based system. However. the current version of PMSS is being
redeveloped using the Knowledge Craft7 environment operating on a TI
Explorer. This system will then be interfaced to the other SEE components via
a hetereogeneous remote procedure calls over the LAN.

* System prototyping and dynamic visualization system: (VIZ) a
visual programming. system prototyping. and diagram building facility [21] that
supports the visual specification and script-based animation of 20/30
software system descriptions [47. 391. We are currently extending this system
by integrating it with the CMS to produce multi-dimensional (20/30 color
graphics) layouts of static and dynamic configurations of multi-version
systems. and system components. (These layouts resemble the complex
circuit diagrams used to design. animate. debug. and document VLSI circuits.)

* Unix (lex. yacc. ingres. rcs. mm. trott. curses. more. OPS5. prolog •...): many of
the language development. relational data base management. revision control.
and related tools available in the Unix operating system serve as a foundation
for most of the SEE tools listed above.

Figure 4-1 provides a simple functional arrangement of the these tools. together with the

objects they process. Other SEE configurations and data flow articulations are

accomodated as well. However. each of these components (and others systems not

listed) were developed and evolved as part of the SF project and coursework.

Subsequently. a number of these tools have then become the subject of further

development and use by doctoral students as part of their dissertation research plans.

4.2. SF Production Techniques for Software Life Cycle Engineering

Many tools in the System Factory SEE are language-directed. This means we can

configure and generate a software tool set that can process alternative language-based

descriptions for a particular system engineering application.S It is possible to specialize a

family of tools supporting system descriptions occurring at each software life cycle stage.

Using this approach. system life cycle product descriptions such as software

requirements. functional specifications. architectural configuration speCifications. detailed

module specifications. user-system dialogues. executable source codes. test case

7 Knowledge Craft is a trademark of Carnegie Group Inc.

SFor example, this suggests that it is possible to generate a tool set that can check/enforce local software
quality assurance standards or design/coding style rules when encoded in the (attributed' language
specification used for tool initialization.

259

www.manaraa.com

Language
Directed
Editor

Parsing
Tabla

Edit Corrvnands

User
Interface
Display

PPSS

PEST

PMSS

Figure 4-1: The System Factory SEE

isplay
semantics
attributes

Parser
Generator

lexical
tokens

flow graph

GIST

LA(1)
Grammar
for chosen
language

DIF SAG VIZ
generated
aDOlication

system
raehic

run time source errors

Compiler
Run

Time
Environment

programs

plans and schedules

diagrams

.source esitmatas

software project
knowledge base

260

~~0000r0 ~COOI3®IT~

~(!) iIGOOPtnlT@

~1T(!)clttn(DG~tn It.~!n() tnoodt

'IT@@rt0

www.manaraa.com

specifications, maintenance procedures, and structured diagrams can be processed as

long as they can be described via the LR(l) or attributed-object language specification

formalisms we use. Subsequently, these kinds of language-based descriptions are also

amenable to automated manipulation supporting system evolution [44, 431.

Thus, a central facet of the SF techniques for engineering software systems throughout

their life cycle is to specify each stage of development in a formal, processable language.

Processing tools can then be configured in ways that check the consistency and

completeness of a given specification, and thereby reinforce the specification technique

appropriate to each stage of system development. In addition, such SF techniques must

incorporate strategies for incrementally developing software descriptions in ways that

utilize available processing tools. In the following subsection, we consider the

intermediate stage of system development where a software system's architectural

configuration must be specified.

4.2.1. Production Technique for Architectural Configuration Specification

A technique for specifying the architectural configuration (or structure) of a LSS system

requires identifying a network of operational modules that progressively transform

required objects into provided data resources. The portals through which these imports

and exports move are the module interfaces. But structural specification first requires

partitioning the system's functional specifications into realizable functional components.

Accordingly, we must choose between alternative partitions of software components,

depending on whether such components are readily available (reusable) or must be built.

The selected partition then circumscribes decisions for allocating computing resources

and staff to module development. As such, the structural system specification defines the

boundaries for distributing concurrent computation across the system, as well as dividing

the detailed design and coding work among available development staff. Thus, if the

division of work changes (due to staff turnover for example), then the system's

configuration may evolve, and vice versa.

Since LSS configurations inevitably evolve over time, then there is need to describe the

evolving system architecture in a form whose consistency and completeness can be

checked and maintained. Further, in LSSE projects, dispersed groups of developers may

specify, code, test, and modify different modules asynchronously. This means that a

given module might exist in a number of different but related versions at any time. It also

indicates that insuring configuration integrity is a major problem in LSSE project

coordination. Similarly, the upward-compatibility of a modified module or subsystem with

respect to the rest of the system (and related component families) must be checked for

consistency [45]. Subsequently, LSSE projects can benefit from a system

261

www.manaraa.com

architecture specification processor, module interconnection and
interface definition language, and configuration diagram
visualizer for managing families of multi-version modules. A module interconnection

language is the medium for specifing system architectural design and configuration [46].

However, we require a MIL that can represent families of multi-version modules and

subsystems. In our case, we developed and employ NuMIL. a MIL designed with these

requirements in mind [43]. Various NuMIL processors" then check and maintain the

consistency and completeness of multi-version software specifications and source code

implementations. An example in the following figure shows a NuMIL specification of a

family of subsystems with different processor versions, each composed of different

versions of two common modules.

subsystem S is
provide a,b;
require c,d;
configurations
/*** Subsystem S has two configurations IBH-PC and VAX ***/

IBM-PC = { M 1 : version 1, M 2 : version 2 ;}
VAX = { M_2 7 version_1,-M_1 7 version_2 7}

module M_1 is
provide a, foo;
require d, b;
implementations {
/* M 1 has two versions */

version version_1 {
realization x.c;

provide
int a;
short faa;
require b(), d;}

version version_2 {
realization y.c;

provide
float a;
int faa;
require be), di}}

module M_2 is
provide b;
require 0, faa;
implementations {
/* M_2 has two versions */

version version_1 {
realization m.c;

provide
int b(s,t) char *s, *t;
require c, foo;}

version version_2 {
realization n.c;

provide
int b(m,n) char *m, *n;
require 0, foo; }}

Figure 4-2: Example NuMIL Specification

262

www.manaraa.com

Overall, these processing requirements represent what the SF see configuration

management sgstem provides [44, 45, 43]. as portrayed in the last figure. Clearly, such

a CMS benefits by incorporating UNIX utilities such as make, sees/res. A relational

database management sgstem (e.g., Ingres, Unify, or Oracle) allows system

developers to store, browse, and query information about families of configured system

components, and to control concurrent access to these components. However, such

RDBMs require a separate object-oriented interface to properly map the descriptions of

configured system components into a relational format [43).

I nll:radi tie
Botch ,. Menu

Inll:r/oa
Inll:r/oa

1 ~ Submit Vr 1
INTEGRITY NuMIL DotaboaeO".:

CHECKS: Dueriptiotv DISPLAY

FomilllM """Iler.hip REPORT

1 I Compo.itionCIvd: MODIFY

U p.CompatiWlitll NuMIL BROWSE
ImptJdo/Chongu

Proeuoor

NuMIL 1 1 Ve,.,ion Control

Dueription

~
SYSTEM

V
Tool.: l-t..

Gencrolor DATABASE: Clvd:ln

Ingru:Dueriptiotv
ChdOut

RCS:SauruCo&. - CA-b.;fl,o..,

Figure 4-3: The SF Configuration Management System

263

www.manaraa.com

4.2.2. Other Production Techniques

The SEE tools described earlier support a diversity of possible software development

techniques. For example, the Gist specification language, analyzer, and simulator supports

the development of new application systems through the construction and refinement of

a series of ever more accurate system prototypes [2]. The complete ensemble of SEE

tools can be used in different configurations to support each system life cycle activity

[50, 30, 52, 55]. Alternatively, new software production techniques might use tools such

as the software documentation hypertext system (OIF) and diagram animation system (VIZ)

operating on a network of coupled processors to support experimental techniques for

prototyping animated multi-media descriptions of application systems under development.

Also, the development of new application systems through the reuse, (re)configuration,

and enhancement of the SEE tool components themselves suggests still another approach

to application software development. While we are currently experimenting with these

(and other) techniques, other challenges remain. In particular, an open problem is deciding

which production technique best supports the development of a given kind of application

for a particular target environment or setting. This requires further research.

4.3. Strategies for Managing Software Engineering Projects in the SF

How do we manage a large engineering team to develop, use, and evolve a LSS system?

That of course is the question we face. But we believe we have a unique approach to

investigating this important question.

Over the past six years, we have conducted in-depth field studies of large system

development projects in various real-world settings [49, 36, 61, 54, 7J. Through careful

comparative analysis of many engineering projects, we systematically identify the

problems of organizing and managing these projects as well as the strategies to mitigate

these problems. Most importantly, we find such problems most often reflect

organizational circumstances that drive up software development costs or drive down

productivity and product quality. Conversely, we find effective solution strategies

represent organizational strategies for reducing costs while increasing productivity and

quality. Rather than describe the analysis and the problems,9 we instead outline four

strategies we find useful for managing large software engineering projects, whether in

industrial or academic settings. These follow.

9See 135. 49. 36. 13. 61. 54. 71 for detailed studies and analytical frameworks. Also con.ider [321 for a
popular introduction to the problems.

264

www.manaraa.com

4.3.1. Focus on the coordination of development work and workers

One set of concepts we find useful emphasize the Importance of establishing a

socially proactive, democratic workplace intended to facilitate computer

aided system development work [8, 16, 23, 24, 60, 7]. The particular concepts to follow

include:

.. provide for both system developers and eventual users to participate in the
decisions determining the system's features, purpose, and modes of use;

.. openly share strategic information regarding the purpose, intended uses, and
expected outcomes with participants developing and using the system;

.. provide a fair sharing of the benefits between participants arising from both
the development and use of a new system;

.. guarantee participants will not be penalized for speaking out or criticizing
proposed directions for local system development efforts;

.. provide an organizational mechanism for a fair settling of disputes between
(or among) system developers, managers, and users;

.. encourage a participatory, democratic awareness among system developers,
managers, and users so that they will be committed to cooperate to do the
best job possible with available resources, and to work through (or around)
the problems that arise in developing or evolving software systems [7];

.. continually seek to provide new tools and techniques that facilitate the
conceptualization and collaboration of system development activities by a
large staff working in a complex organizational setting.

These concepts thus provide a basis for the other strategies for organizing system

development work that follow.

4.3.2. Design project organization to facilitate staff commitment

Everyone will be responsible for managing some portion of overall system development

work activities. However, project managers in particular will be responsible for

coordinating work and resources within the local computing infrastructure, they need to

know about production bottlenecks and other troublesome conditions. Maintaining a high

rate of software production requires the commitment of staff and resources to achieve it.

Continuity of staff commitment to project and colleagial objectives is more important

than mangerial control over these staff [49, 36]. Management control in large projects is

distributed and more subject to contention. Project staff who must be coerced into

performing undesired tasks cannot be expected to perform those tasks with high

productivity and care. Maintaining staff commitment requires regularly assessing the

265

www.manaraa.com

conditions that bind their commitment to work: desired resource availability, local

(dls)lncentlves, and career opportunities. Such an assessment emerges when staff

participate in deciding (rather than being told) how to realize project objectives. The

regularity of assessment depends on the perceived stability or uncertainty of local project

management conditions. Unexpected circumstances will always emerge and give rise to

destabilizing conditions. However, strong commitment will often provide staff members

idiosyncratic motivation to accommodate local contingencies until the prevailing order is

reestablished, unless their commitment is sufficiently weakened.10 But if their

commitment to project objectives is strong, so that their perceived investment (or stake)

in project activities is clear, then they can build on their investment by discovering new

ways to perform their work activities.

4.3.3. Identify the incentives that motivate project participants

Why are software developers as productive as they are? This may seem to be an odd

question, since many people are fond of asking how do we make software developers

more productive. But we find that to answer the latter, you must first be able to answer

the former. In particular, we find that what motivates software developers to be as

productive as they can be is often idiosyncratic and circumstantial [49, 361. What

motivates developers today, may not motivate them equally well tomorrow. For example,

In working with a student staff in the SF, one might assume that they seek to be very

productive to insure earning a high grade. This seems true for some staff, but not all.

Some students seek to gain first-hand experience and research skill in the development

and use of state-of-the-art software tools. Other students hope for advancement or

promotion In their job, based on their acquisition of certain new technical skills, such as

LSSD. Still other students have an entreprenuerial spirit, and hope to identify new

software or services through their participation that they could eventually develop and

profit from in the private sector. Finally, many students are motivated by more than one

of these situations. In sum, near-term rewards such as a high grade may provide an

incentive for certain staff, while other staff are primarily concerned with long-term

professional, occupational, or financial opportunities. Therefore, in the SF, we seek to

regularly assess and cultivate the incentives that might provide intrinsic motives for each

staff participant to be highly productive and quality conscious.

l~he cyclic building of Itrong commitment for some (".igning up"l, end the weekening of commitment for
othe .. ("burning out"1 i. e key element in whet give •• new system its soul (32).

266

www.manaraa.com

4.3.4. Develop new software technology as a package

LSS systems are more than a simple collection of many programs and source code files.

Every large software system assumes some configuration of hardware.

telecommunications facilities. software base. documentation. time. money. skills.

organizational units. management attention. and other resources for its productive

development or use [341. This "package" of computing resources outlines a set of

requirements that must be met by participants working within the local computing

infrastructure. Each package must fit transferred. inserted. and transitioned into an

idiosyncratic local setting. As such. users need to know what resource requirements are

built into a new technology in order to assess both the costs and ease with which it can

be transferred into existing computing arrangements. However. as a new technology is

transferred and assimilated into ongoing organizational routines. the local computing

infrastructure will be altered to reflect its repackaging. Historical trends in software

engineering indicate that this repackaging is done to make the work activities more

productive and routine. However. these trends also indicate a finer division and

specialization of labor among participants as well as increase the number of resources to

be coordinated. Accordingly. an important cost of using new software technologies

intended to make the work activities more productive is increased demands for attention

to detail. coordination. and routine. This is a form of work management that individual

participants must increasingly perform. Thus. in developing a new software systems, tools.

or engineering methodology, a strategy for managing its life cycle in its target setting

must explicitly be built into its package to facilitate its transfer, insertion and transition

[491.

4.3.5. Project Management Strategy Summary

What the preceding four strategies describe are inherently organizational approaches to

more effectively deal with the problems of managing LSSD projects. These strategies are

quite different than those derived from a traditional rational planning and control

approach to engineering project management [19, 67,11.311. Elsewhere, we identify

many additional strategies for handling other problems in organizing and managing

system engineering projects [36, 61, 53. 54, 7]. However, we have limited experience with

these strategies outside the SF laboratory setting. thus we cannot yet prove their

universal effectiveness in all kinds of settings. However. as we continue to investigate,

apply and evaluate these strategies, they will be further refined and specialized to

different settings. but kept practical. This is one of the goals of this line of long-term

experimental research in the SF.

267

www.manaraa.com

5. Experiences in SF Technology Transfer

Some people hold that the primary purpose of a school of science, engineering, or

information technology is technology transfer. Such transfer nominally occurs via

educated students who take their newly acquired academic scholarship to their workplace,

and then apply this knowledge to practical problems. We consider this the baseline for

software technology transfer. But the successful practice of the software technology

transfer (STT) on a larger scale requires understanding much more than this [58].

Subsequently, we use this section to describe some of our experiences in STT.

We observe two different modes of STT through the SF project:

intraorganizational and interorganizational. Within the SF project, the

value of internal STT is taught and practiced. This happens in three ways. First, project

teams are given access to the prior year team project deliverables. Students are

encouraged to reuse and incorporate the prior project life cycle products (e.g., subsystem

functional specifications and source implementation) into their own, with shared products

duly acknowledged. Many project teams choose to do this and therefore are able to

deliver more substantial and more capable products. Second, since project teams are

focussed primarily on their respective tools or subsystems to engineer, all team members

are required to conduct project speCification and design reviews for some other project

component. This gives the student staff an opportunity to evaluate and compare their

deliverables, and provide orchestrated quality assurance reviews. This also gives the

students a chance to learn more about other parts of SF products and processes. Third,

students are directed to use different SEE components to support the development of

their deliverables. Thus, students become users of advanced prototype software

engineering tools, and can evaluate the tools' strengths and weaknesses when applied to

in a large project setting.

Moving SF products, production techniques, or project management strategies into other

organizational settings takes the preceding STT efforts further. Interorganizational STT

occurs in a number of ways. First, all students who complete their project deliverables are

encouraged to share them with other team members and to take to their workplace."

Thus, students can take parts of the SF away with them to their workplace.

Second, some entreprenuerial students have elected to use their project deliverables as

the basis for developing commercial software products. They seem confident in their own

11Such exchanges require an agreement not to further disseminate, license, or market other people's work or
university resources without prior written agreement. Thus, the agreement is intended to have the form of an
extended loan of borrowed property, but not an entitled claim to ownership or exclusivity.

268

www.manaraa.com

technical ability and in the capabilities of the prototypes products they have delivered as

part of their coursework. The personal computer software arena seems to be a favorite

area these budding entreprenuers seek to find a niche for their eventual product.

However, the emerging computer-aided software engineering (CASE) marketplace is

gaining more attention. Many of the student start-up firms remain relatively small and

last less than two years. On the other hand, others seem to survive and grow. But such

experiences are part of process of real-world continuing education in SIT for these

students.

Third, as witnessed through this report, researchers participating in the SF project (such

as the author) regularly produce research publications, conference presentations, and

academic/industrial research colloquia for peer group consumption. A growing number of

research publications are co-authored by students writing about the products of their

completed coursework in the SF. Students can thus pursue the option of diffusing their

knowledge and technological concepts through research publications, thereby adding

value to both the educational experiences and professional status.

Next, as the SF project continues to push both the state of the practice and the state of

the art in LSSO, various industrial organizations actively seek access to SF products,

production processes, and project management strategies. These technologies are

diffused through consulting contracts, contract research, and licensing arrangements. As

might be expected, consulting arrangements facilitate the transfer of expertise through

on-site short courses, project or proposal reviews, and product/process designs via

research reports or technical memoranda. Contract research represents a greater level of

commitment from an industrial firm, usually in the form of an IR+O subcontract. We

restrict our involvement to undertakings directed at basic software engineering research

problems rather than commercial products. Accordingly, we deliver our research results in

the forms of technical reports or prototype systems. For example, for one contractor, we

delivered a prototype system specification generator that accepts structured English

requirements and paraphrases them into an operational specification language. In another

case, we are actively exploring advanced techniques for specifying and documenting

distributed, real-time multi-processing systems. Since we use the SF project to produce

these technologies, we also then incorporate these products into subsequent SF

configurations. Last, technology licensing agreements represent the direct acquisition of

SF deliverables through the university for commercial purposes. Here we find interest not

only in acquiring prototype software implementations, but also (or sometimes only)

interest in acquiring rights to software specifications or deSigns, since these are viewed

as being technologies reusable in many potential applications.

269

www.manaraa.com

Clearly, all of the the preceding channels for diffusing SF technologies into other

organizational settings do not complete the sn process [58]. The successful transition

and prolonged use of the concepts, artifacts, and packages we produce may take years.

However, we do note that most of our industrial sponsors seek sustained relations that

get reiterated, and we continue to be approached by more firms interested in gaining

access to SF technology and student staff.

6. Conclusions: Observations and Potentials

The SF project provides a hands-on learning and research experience in LSSD for all

project participants. We have demonstrated the large-scale software engineering project

coursework can prototype complex full-scale systems in a relatively short time. Our early

experiments in developing a computer-aided software engineering environment

demonstrate this. Similarly, we were able to integrate and operationalize a diverse

collection of reusable software tools and life cycle engineering techniques. A LSSD effort

such as the SF project immediately gives project participants insights into the importance

identifying and practicing many different project management strategies. This happens as

soon as participants find that the most difficult LSSD problems to solve are primarily

organizational, rather than technical. Last. although seemingly ignored in most software

engineering coursework, we find that software technology transfer can be taught and

practiced by all LSS project participants. As such, we believe that other software

engineering researchers and educators should consider adopting reiterated and sustained

project courses such as the SF project.

Developing LSSD projects is possible but by no means limited to the types of tools,

packages, or software engineering environments developed in the SF. For example,

domains amenable to LSSD include graphic programming environments, production of

'feature-Iength" computer animated movies, reconfigurable user interface management

systems, group design of application-specific VLSI processors, interactive CD ROM-based

undergraduate CS curriculum courseware, system factories for computer integrated

manufacturing, environments and simulators for developing integrated multi-sensory

intelligent systems, and so forth.

Many universities are becoming equipped to conduct LSSD projects due to extensive

institutional commitments to create computerized campuses [68]. Most of these

universities will seek a heterogeneous, open system network of computing resources

distributed across many institutional locations. This increasing diversity of computing

environments will lead to a greater spanning of multiple organizational units in order to

successful complete LSSD projects. In our view, the trailblazers best positioned to

capitalize on such opportunities will be faculty and researchers in the area of large-scale

270

www.manaraa.com

software engineering.

7. Reterence.

1. A. Avizienis and J. Kelly. "Fault Tolerance by Design Diversity: Concepts and Diversity".
Computer 17,8 (1984), 67-80.

2. R. Balzer, N. Goldman, and D. Wile. "Operational Specifications as the Basis for Rapid
Prototyping". ACM Software Engineering Notes 7,5 (1982), 3-16.

3. R. Balzer, T. Cheatham, and C. Green. "Software Technology in the 1990's: Using a
New Paradigm". Computer 16, 11 (1983),39-46.

4. R. Balzer. "A 15 Year Perspective on Automatic Programming". IEEE Trans.
Software Engineering SE-11, 11 (1985),1257-1267.

5. M.G. Barnes, et. al. "A Computer Science Courseware Factory". SIGCSE Bulletin
18, 1 (1986), 318-323.

6. V.R. Basili and R.W. Reiter. "A Controlled Experiment Quantitatively Comparing
Software Development Approaches". IEEE Trans. Soft. Engr. SE-7, 3 (1981),
299-320.

7. S. Bendifallah and W. Scacchi. "Understanding Software Maintenance Work". IEEE
Trans. Software Engineering 13,3 (1987), 311-323.

8. P. Bernstein. Workplace Democraticization: Its Internal Dynamics.
Kent State University Press, 1976.

9. V. Berzins, M. Gray, and D. Naumann. "Abstraction-Based Software Development".
CACM 29,5 (May 1986),402-415.

10. B.V. Boehm. "An Experiment in Small-Scale Software Engineering". IEEE Trans.
Soft. Engr. SE-7, 5 (1981), 482-493.

11. B. Boehm. "Seven Principles for Software Engineering". J. Software and
Systems 3, 1 (1983), 3-24.

12. B.W. Boehm, T. Gray, and T. Seewaldt. Prototyping vs. Specifying: A Multi-project
Experiment. Proc. 7th. Intern. Cont. Soft. Engr., 1984, pp. 473-484.

13. F. van den Bosch, J. Ellis, P. Freeman, L Johnson, C, McClure, D. Robinson,
W. Scacchi, B. Scheft, A. van Staa, and l. Tripp. "Evaluating the Implementation of
Software Development Life Cycle Methodologies". Software Engineering Notes 7,
1 (1982),45-61.

14. Harvey Bratman and Terry Court. "The Software Factory". Computer 8 (May 1975),
28-37.

15. M. Brown, N. Meyrowltz, and A. van Dam. ·Personal Computer Networks and
Graphical Animation: Rationale and Practice". ACM SIGCSE Bulletin 15, 1 (February
1983), 296-307.

271

www.manaraa.com

1~~ J.S. Brown and S. Newman. "Issues in Cognitive and Social Ergonomics: From Our
House to Bauhaus". J. Human-Computer Interaction 1. 4 (1986).

17. A. Castillo. S. Corcoran. and W. Scacchi. A Unix-based Gist Specification Processor:
The System Factory Experience. Proc. 2nd. Intern. Conf. Data Engineering. 1986. pp.
582-589.

18. R. Cronk and D. Zelinski. ES/AG: A System Generation Environment for Intelligent
Application Software. Proc. SOFTFAIR II. IEEE Computer Society. 1985. pp. 96-100.

19. J. Distaso. "Software Management - A Survey of Practice in 1980". Proceedings
IEEE 68.9 (1980).1103-1119.

20. L. Eliot and W. Scacchi. "Toward a Knowledge-Based System Factory: Issues and
Implementations". IEEE Expert 1. 4 (1986). 51-58.

21. S. Feiner. D. Salesin. and T. Banchoff. "Dial: A Diagrammatic Animation Language".
IEEE Computer Graphics and Applications 2. 7 (1982). 43-56.

22. M.S. Fox and S.F. Smith. "ISIS: A Knowledge-based System for Factory Scheduling".
Expert Sgstems 1. 1 (1984). 25-49.

23. L. Gasser. "The Integration of Computing and Routine Work". ACM Trans.
Off ice Info. Sgs. 4. 3 (1986). 205-225.

24. E.M. Gerson and S.L. Star. "Analyzing Due Process in the Workplace". ACM Trans.
Office Info. Sgs. 4. 3 (1986). 257-270.

25. N. Gibbs and R. Fairley (Ed.). Software Engineering Educa tion. Springer
Verlag. New York, 1987.

26. M. Barbacci. A.N. Habermann. and M. Shaw. "The Software Engineering Institute:
Bridging Practice and Potential". IEEE Software 2. 6 (November 1985). 4-21.

27. B. Hannaford. The Electronic Spreadsheet: A Workstation Front-End for Parallel
Processors. Proc. COMPCON 1986. 1986. pp. 316-321.

28. J.J. Horning and D.B. Wortman. "Software Hut: A Computer Program Engineering
Project in the Form of a Game". IEEE Trans. Soft. Engr. SE-3. 4 (July 1977).
325-330.

29. H. Hunke (ed.). Software Engineering Environments. North-Holland. 1981.

30. R. Katz. W. Scacchi. and P. Subrahmanyam. "Development Environments for VLSI and
Software Engineering". J. Sgs. Soft. 4. 2 (1984). 14-27.

31. B.I. Kedzierski. Knowledge-Based Project Management and Communication Support in
a System Development Environment. Proc. 4th. Jerusalem Conf. Info. Techology. 1984. pp.
444-451.

32. T. Kidder. The Soul of a New Machine. Avon Books. New York, 1982.

272

www.manaraa.com

33. R. Kling and W. Scacchi. "The DoD Common Higher Order Programming Language
Effort (Ada): What Will The Impacts Be?". SIGPLAN Notices 14, 2 (1979),29-41.

34. R. Kling and W. Scacchi. Recurrent Dilemmas of Computer Use in Complex
Organizations. Proc. 1979 National Computer Conference, 1979, pp. 1067-116. Vol. 48.

35. R. Kling and W. Scacchi. "Computing as Social Action: The Social Dynamics of
Computing in Complex Organizations". Advances in Computers 19 (1980), 249-327.
Academic Press, New York.

36. R. Kling and W. Scacchi. "The Web of Computing: Computer Technology as Social
Organization". Advances in Computers 21 (1982), 1-90. Academic Press, New York.

37. J.C. Knight and N. Leveson. "An Experimental Evaluation of the Assumption of
Independence of Multiversion Programming". IEEE Trans. Soft. Engr. SE-12, 1
(January 1986), 96-109.

38. D. Lenat, A. Borning, D. McDonald, C. Taylor, and S. Weyer. Knoesphere: Building
Expert Systems with Encyclopedic Knowledge. Proc. IJCAI-83, 1983, pp. 167-169.

39. N. Magnenat-Thalmann, D. Thalmann, and M. Fortin. "Miramin: An Extensible Director
Oriented System for the Animation of Realistic Images". IEEE Comptuer Graphics
and Applications 5,2 (1985), 48-73.

40. J. Manley. Computer-Aided Software Engineering (CASE): Foundation for Software
Factories. Proc. COMPCON Fall '84, 1984, pp. 26-37.

41. Y. Matsumato and others. SWB: A Software Factory. In Software Engineering
Environments, H. Hunke, Ed., North-Holland, 1981.

42. W.M. McKeeman. Experience with a Software Engineering Project Course. In
Software Engineering Education, Springer-Verlag, New York, 1987, pp. 234-262.

43. K. Narayanaswamy and Walt Scacchi. "A Database Foundation to Support Software
System Evolution". J. Systems and Software 7 (1987),37-49.

44. K. Narayanaswamy and W. Scacchi. An Environment for the Development and
Maintenance of Large Software Systems. Proc. SOFTFAIR II, 1985, pp. 11-25.

45. K. Narayanaswamy and W. Scacchi. "Maintaining Configurations of Evolving Software
Systems". IEEE Trans. Soft. Engr. 13,3 (1987), 324-334.

46. R. Prieto-Diaz and J. Neighbors. "Module Interconnection Languages". J. Sys.
and Soft. 6,4 (1986), 307-334.

47. C. Reynolds. "Computer Animation with Scripts and Actors". Computer Graphics
16, 3 (1982), 289-296.

48. A. Sathi, T. Morton, and S. Roth. "Callisto: An Intelligent Project Management
System". AI Magazine 7, 5 (1986), 34-52.

49. W. Scacchi. The Process of Innovation in Computing: A Study of
the Social Dynamics of Computing. Ph.D. Th., Department of Information and
Computer Science, University of California, Irvine, 1981.

273

www.manaraa.com

50. W. Scacchi. A Language-Independent Software Engineering Environment. Workshop
Report: VLSI and Software Engineering. IEEE Computer Society. 1982. pp. 99-103. IEEE
Catalog No. 82CH1815-0.

51. W. Scacchi. Developing VLSI Systems with a Silicon Engineering Environment. IEEE
Intern. Conf. on Computer Design. IEEE. 1983. pp. 472-475.

52. W. Scacchi. The System Factory Approach to VLSI and Software Engineering.
Proceedings AFCET Second Soft. Engr. Conf .• 1984. pp. 349-359.

53. W. Scacchi. "Managing Software Engineering Projects: A Social Analysis". IEEE
Trans. Soft. Engr. SE-10.1 (January 1984). 49-59.

54. W. Scacchi. Applying Social Analysis of Computing to System Development.
Proceedings Aarhus Conference on Development and Use of Systems and Tools. August.
1985. pp. 477-500. Aarhus. Denmark.

55. W. Scacchi. The Software Engineering Environment for the System Factory Project.
Proc. 19th. Havyaii Intern. Conf. Systems Sciences. 1986. pp. 822-831.

56. W. Scacchi. "Shaping Software Behemoths". UNIX Rev lew 4. 10 (1986). 46-55.

57. W. Scacchi. Software Specification Engineering: An Approach to the Construction of
Evolving Software Descriptions. USC/Information Sciences Institute. 1987. (in preparation).

58. W. Scacchi and J. Babcock. Understanding Software Technology Transfer. internal
report. Software Technology Program. Microelectronics and Computer Technology Corp.,
Austin, TX.

59. W. Scacchi and C.M.K. Kintala. Understanding Software Productivity. technical
memorandum, Advanced Software Concepts Group. An Bell Laboratories, Murray Hill, NJ.

60. W. Scacchi, S. Bendifallah, A. Bloch, S. Choi, P. Garg, A. Jazzar, A. Safavi, J. Skeer,
and M. Turner. Modeling System Development Work: A Knowledge-Based Approach.
Computer Science Dept., USC, 1986. working paper SF-86-05.

61. W. Scacchi, L. Gasser, and E. Gerson. Problems and Strategies for Organizing
Computer-Aided Design Work. Proceedings IEEE Intern. Conf. Computer-Aided Design.
1983, pp. 149-152.

62. T. Schwederski and H.J. Siegel. "Adaptable Software for Supercomputers".
Computer 19,2 (1986). 40-48.

63. R.W. Selby, V.R. Basili. and F.T. Baker. CLEANROOM Software Development: An
Empirical Investigation. TR-1415, Computer Science Dept.. Univ. of Maryland.

64. M. Sherman and A. Marks. Using Workstations to Investigate Computer Networks.
Proc. IEEE 1985 Intern. Conf. on Computer Workstations. IEEE. 1985, pp. 214-221.

65. S. Sluizer and P. Cashman. XCP: An Experimental Tool for Managing Cooperative
Activity. Proc. 1985 ACM Computer Science Conf .• 1985. pp. 251-258.

274

www.manaraa.com

66. D. Tajima and T. Matsubara. "Inside the Japanese Software Factory". Computer 17,
3 (1984), 34-43.

67. R. Thayer, A. Pyster, and R. Wood. "Major Issues in Software Engineering Project
Management". IEEE Trans. Software Engineering SE-7, 4 (1981).

68. D.A. Updegrove. "Computing Intensive Campuses: Strategies, Plans, Implications".
EDUCOM Bulletin 21, 1 (1986), 11-14.

69. A.1. Wasserman and P. Freeman. Software Engineering Education: Needs
and Objectives. Springer-Verlag, New York, 1976.

70. R. Waters. "The Programmers Apprentice: A Session with KBEmacs". IEEE Trans.
Software Engineering SE-ll, 11 (1985), 1296-1320.

71. S. Weyer and A. Borning. "A Prototype Electronic Encyclopedia". ACM Trans.
Office Info. Sys. 3,1 (1985),63-88.

275

www.manaraa.com

Performing Requirements Analysis Project Courses
for External Customers

John W. Brackett
Professor of Information Technology
Wang Institute of Graduate Studies

Introduction

The Software Engineering Project is a required course in the Master of Software

Engineering Program at the Wang Institute (WI). The objectives of project courses and

alternative approaches to organizing them have been described by McKeeman (I). Each

student takes two, one semester projects near the end of the program. The projects are

team efforts, with teams ranging in size from three to seven members. A project

objective, from the viewpoint of the instructor, is to provide a learning experience in

thirteen weeks that scales usefully to industrial practice. A project in intended to

integrate the knowledge the student has obtained from the courses in the core

curriculum (2, 3), with emphasis on team techniques, communication skills, planning,

reporting, reviewing and documentation. Projects are judged by both academic and

industrial standards, and are closely supervised by a faculty member.

During the summer and fall of 1986, three projects were completed under the author's

supervision in which requirements specifications were produced for external customers.

The involvement of an external customer, and the concentration on the requirements

phase of the software lifecyle, were a major departure from previous projects.

The Challenge of Teaching Requirements Analysis

Requirements analysis is one of the most difficult subjects in a software engIneering

program to teach since it lacks an adequate underlying body of knowledge and is

dominated by market-driven methods. However, requirements analysis must be an

integral part of the WI MSE program, given the impact of complete, understandable

and testable requirements on the success of any software project. The project course is

an excellent vehicle for giving students experience with the analysis methods taught in

one of the required courses, while also teaching the oral, written, and interpersonal

www.manaraa.com

communication skills essential for performing requirements analysis.

All WI students have industrial software development experience before starting the

MSE program, but few have had any experience in specifying requirements. Almost all

have worked exclusively in organizations which are very sophisticated in their use of

computers. A majority have gained all their experience in development organizations

which are totally isolated from customers and users.

Objectives of the Requirements Analysis
Project Course

The objectives for the project course are:

1. Project members will understand the work products which must be produced
during requirements analysis and the processes used to create them.

2. Each student will gain experience in data gathering, interviewing, and
obtaining user review/approval.

3. Each team will produce professional quality presentations and documents
which are understandable to an audience that is not sophisticated about the
use of computers.

In addition to meeting these objectives, project course members have gained valuable

experience in managing the analysis process.

The Need for an External Customer

In order to meet objectives 2 and 3, an external customer is essential. The instructor or

other WI staff can not adequately simulate a customer who is unsophisticated about the

use of computers.

The capabilities and limitations of methods and computer support tools become much

more clear when stressed in a real world project. There is a tendency for the instructor,

when designing a simulated project, to ensure it will provide the "right" context for

using a given method.

The enthusiasm of the customer for a job well done, and the customer's plans to

277

www.manaraa.com

implement the requirements specification, must substitute in analysis projects for the

satisfaction of producing working software. All three student teams became, through

their interaction with the customer, highly motivated to deliver professional quality

analysis results.

Criteria for Customer Selection

An external customer must meet three criteria in order to be seriously considered:

1. The organization is non profit.

Since most WI students are company sponsored, and students from multiple
companies comprise teams, projects for profit-making organizations are not
feasible. The ability to make a contribution to a worthy organization is an
important student motivator.

2. The staff and management is supportive of the project and have reasonable
expectations for the use of a computer.

Organizations are rejected if a manager has sought a student team as an
alternative to having the project performed by an internal group. WI
students are usually unskilled in dealing in a politically charged
environment, and such an environment would certainly distract from the
educational experience.

3. The instructor estimates the project to be approximately 400-600 hours of
work for a trained analysis team.

A project course team typically is 3-4 students, and each student is expected
to invest about 180 hours in the project over a 13 week period. The project
course, therefore, has about 540 hours (3 person team) to 720 hours (4
person team) available. Since the students have studied the methods to be
used, but are not trained analysts, a project size that allows time for
studying methods and tools, plus iteration of the deliverables, is essential.

Preference is given to organizations having at least one senior manager who understands

the organization's automation priorities. Progress is much more rapid if one person in

the organization is an informed customer!

278

www.manaraa.com

Preparing for the Project Course

A significant fraction of the instructor's work must be done before the semester starts.

Selecting the customer for each team can be time consuming, especially the first time

the course is offered. The first step is to obtain candidates, followed by selecting one

for each team of 3-4 students. Prior to the start of the course the organization must be

counselled on the type of information which the students will initially need so that it

will be available without an unreasonable delay. The instructor must learn enough of

the organization's operations and needs that he can assess the students' progress during

the semester.

In order to generate candidates, WI placed an advertisement in two Sunday newspapers

in nearby cities. The ad described the opportunity for a non-profit organization and

the work which the students would provide. From 15 organizations that contacted WI,

three organizations were evaluated in depth. To do the evaluation the instructor visited

each one at least twice in order to understand the organization's needs and to meet the

key staff members with whom the students would be working. The evaluation was

performed as if the instructor were a senior analyst for a consulting organization who

was charged with preparing a quotation for the project. Approximately 6 man days

were spent evaluating the three finalists. One organization (the Boys Club in a nearby

city) was deemed the best candidate for the first presentation of the project course,

since it both met all the criteria and had also recently obtained a donation of a

computer system. The other two finalists (a regional visiting nurse/homemaker service

and a suburban mental health counseling service) were later selected for the projects to

be conducted the following semester.

The first time the project course was given the instructor concentrated on making sure

the organization had available the information the students would need to get started,

but he did not organize the initial interview process. Due to travel by the Executive

Director, vacations, and scheduling conflicts, three weeks passed (out of 13 in the

semester) before the students could meet with all the relevant staff members; in

estimating the job the instructor assumed the meetings would occur in the first week.

For the second project course, which involved two teams, the instructor decided that

basic information on the organization's functions, management structure, and

279

www.manaraa.com

operational problems ought to be available at the start of the course. To accomplish

this information gathering, while also providing an introduction to key personnel, the

instructor conducted on-site interviews which were videotaped by the WI audiovisual

staff. As a result the students could review the videotapes and generate relevant

questions prior to their first visit to the organizations.

The inStructor must also select the computer support tools to be used and ensure they

are are ready for productive use at the beginning of the project. The software was

selected by the instructor using the same criteria he would have used if the project were

being done in a consulting company. Approximately 4 man weeks (by the instructor

and other WI personnel), distributed over a 3 month period, were devoted to tool

selection, tool setup and tool documentation. Since all of the tools used have a

significant learning curve, WI staff had to generate "how to get started" material to

enable the students to quickly make use of the tool facilities most needed at the start of

the project.

Running the Project Course

Two of the three project teams used Structured Analysis (SA), based upon either

DeMarco's text (4) or Ward's text (5), and Excelerator (an mM PC/XT based tool

supporting SA from Index Technology). One group using Structured Requirements

Definition (SRD), based upon Orr's text (6), and DesignMachine (an mM PC/AT based

tool supporting SRD from Ken Orr and Associates). All three groups used the Curtice

and Jones approach (7) to data modelling, and Lyddia (an mM PC based tool

supporting the data modelling approach from Cascade Software). Two of the three

groups performed some prototyping using Cornerstone (a relational data base system for

the mM PC/XT) to demonstrate the implications of their requirements specification.

The first 6 weeks of the projects were devoted to information gathering, model building

and assessing areas of potential automation. At the end of the sixth week, a project

review was held with the Executive Director. There were two important purposes of the

review: for the students to demonstrate their understanding of the organization's

functions and needs, and for the customer and students to agree on the areas in which

the project work should focus for the remainder of the semester.

280

www.manaraa.com

The results of the project course are:

1. A report to the Executive Director and the Board of Directors.

This report must be written for the Board of Directors and non-technical
customer staff who are responsible for managing and funding the
implementation of the project results. Most WI students have never
prepared such a document before, and several iterations were typically
required before it was ready for submission.

2. A one hour presentation to the Board of Directors.

The presentation is a summary of the most important conclusions and
recommendations of the report, followed by a question and answer period.
The customer presentation is included as part of the WI project
presentation, which is attended by the instructor, other faculty and
interested students. Students find that the Board of Directors are "lambs"
compared to their peers. The WI presentation also includes material on the
methods and tools used, and a more technical description of the project
results.

3. A requirements specification oriented towards the developers of the system.

The document is written under the assumption that neither the students nor
the instructor will be available when system implementation begins. All SA
models, data models and prototype screens/reports developed are included in
appendices.

All students on the project normally receive the same grade, unless the instructor has a

good reason for a different policy. This grading approach is announced at the

beginning of the semester and is designed to emphasize the need for a team effort to

satisfy the customer. In three projects there have been only two cases where a student

received a different grade than the remainder of the team; in both cases a reduction was

made because the student clearly did not contribute equally to the production of the

final deliverables.

Role or the Instructor

The first time the project course was given the instructor explicitly played only two, but

distinct, roles: Technical Consultant and Customer Interface. He differentiated between

the two roles in meetings with the project team. As the technical consultant he was

281

www.manaraa.com

willing to provide information, and give advice, on the the use of the methods and the

computer support tools. However, his advice could be freely disregarded. The

Customer Interface was the account executive in the sales organization of the simulated

consulting organization employing the project team. Whenever issues needed· to be

resolved with the Executive Director (such as a staff member seeming not to cooperate

with the project team), the Customer Interface could be asked to work on the problem.

The Customer Interface let the project team know he was particularly interested in

customer satisfaction (the potential for additional business!).

The instructor explicitly did not act as the project manager and did not attempt to

direct the work of the project team. Project teams do not usually have a project

manager in the industrial sense, since the students strongly prefer to function as equals.

On a project with a tight schedule and deliverables to an external customer, the

conventional WI project organization can become highly stressed. One member of the

team, with significant leadership skills, evolved into a project coordinator role. The

team established its own schedules for intermediate milestones, which were usually the

completion of SA modelling phases. This approach worked reasonably well for the first

11 weeks of the 13 week semester. However, two weeks before the end of the project it

became obvious that the preparation of the report for the non technical audience was in

serious trouble. The member with the best writing skills did not feel she had the

authority to edit the work of the others to the extent necessary. In addition, more

material was being invented at the last minute than could be iterated through a review

cycle of peers. In the last few days of the project the instructor had to assume the role

of Project Manager and make detailed decisions on the format and content of the non

technical document.

Based upon the experience with the first project, the instructor's role evolved in the

second project course. In addition to the Technical Consultant and the Customer

Interface roles, the instructor acted as Project Manager to the extent of establishing

several internal schedule milestones so that the project team did not have the

temptation to invest more time than was necessary in early project phases, such as

modelling current operations. There is a great temptation for first time users of

Structured Analysis to equate the development of the models to the production of a

deliverable requirements specification document. The dates for outlines and drafts of

the Board of Directors presentation and of the nontechnical report required the

students to begin to prepare the deliverables well before the end of the semester. As a

282

www.manaraa.com

result, the instructor was able to playa much lower key role in the final weeks.

In summary, the instructor must use his experience to keep the students from reaching

a situation where their only choices are to produce unprofessional deliverables or to

invest far more effort than intended near the end of the semester. Since the students

become highly motivated by their involvement with the non profit customers, the

instructor must ensure that the project team uses its time wisely and that they do not

sacrifice their work in other courses at semester end.

Conclusions

The three requirements analysis projects offered to date have been valuable experiences

for the customers, the students and the instructors. In the instructor's opinion the

results delivered were comparable to those that would have been produced by major

consulting firms, for which they would have charged $25,000 to $35,000. The project

course supplied a learning environment for the students very close to industrial practice.

The non profit organizations received results that none of them could have otherwise

afforded and all were very appreciative of the students' efforts. Two of the three

organizations are making active use of the results, and have secured grant funding to

purchase computers.

The project benefits are not without their costs. A project course organized in this

manner is time consuming for the instructor; for a course with 2 teams of 4 students

each, the time investment is comparable to a classroom course for 30-40 students. The

instructor must be technically capable of doing the customer's project and should have

previously estimated (accurately!) the resources required to perform such a project. The

most devastating mistake the instructor can make when selecting the customer is to

seriously underestimate the size of the project. Faculty members with the required

experience are the only ones, in the author's opinion, who should undertake student

projects with external customers.

In their WI project presentations, the teams include their assessment of the project. In

their opinion the most important benefits of the projects were:

• the information gathering skills they learned

• the experience they received in communicating in the language of the

283

www.manaraa.com

customer

• the opportunity they had to test requirements analysis methods and tools on
a project of sufficient complexity that they could apply their experience to a
future industrial project.

In the instructor's opinion, these benefits could have only been achieved in projects

working with an external customer.

284

www.manaraa.com

References

1. McKeeman, W., "Experience with a Software Engineering Project Course",
in Software Engineering Education (ed. Gibbs and Fairley), Springer Verlag,
1987.

2. Fairley, R., "Software Engineering Education: An Idealized Scenario", in
Software Engineering Education.

3. Gerhart, S., "Skills versus Knowledge in Software Engineering Education: A
Retrospective on the Wang Institute MSE Program", in Software
Engineering Education.

4. DeMarco, T., Structured Analysis and System Specification, Yourdon Press,
1978.

5. Ward, P., System Development without Pain, Yourdon Press, 1984.

6. Orr, K., Structured Requirements Definition, Ken Orr and Associates, 1981.

7. Curtice, R. and Jones, P., Logical Data Base Design, Van Nostrand
Reinhold, 1982.

285

www.manaraa.com

An Academic Environment for Undergraduate Software Engineering
Projects

Mic~l A. Ertinger. member. IEEE

Wing C. Tam. member. IEEE

ABSTRACT

Software projects constitute a crucial component in an undergraduate software
engineering education. In this paper we list the requirements for software pro
jects that are essential in providing maximum benefits to the students. We
describe the approach taken by Harvey Mudd College, known as the Clinic pro
gram, to provide software projects in support of our software engineering educa
tion. We follow with discussions of the responsibilities of the principle partici
pants in a clinic project and the advantages of, and our experiences with, the
clinic approach.

I. Introduction

The key to a good software engineering education is a combination of computer science

core knowledge, software engineering concepts and techniques, and finally a software engineer

ing project. This paper discusses the approach to the software engineering project as developed

by Harvey Mudd College (HMC). Of course project oriented software engineering courses are by

now common [1] [2] [3]. The objective of such courses is to provide the students with experience

in the practice of software engineering concepts in the solution of real-world problems. How

ever, many of these courses fail to meet the objective or cannot maximize the benefits of the pro

ject to the students because of the many difficulties in running such a course. Some of these

difficulties are:

1) The selection of real-world projects and not artificial pedagogical problems.

2) Inadequate student time to devote to a significant project.

3) The difficulty in finding users who can interact with the students in the project.

In this paper we present our view of the requirements for a good software engineering pro

ject and give an overview of the HMC Clinic program, which is our approach for providing real-

www.manaraa.com

world projects to our students. We follow with a discussion of each of the participants in a HMC

software engineering clinic project and then conclude with the advantages of. and our experiences

with. software engineering clinics.

ll. Software Engineering Project Requirements

The importance and benefit of software projects in a software engineering education are

widely recognized by computer science educators and are stressed in software engineering curri

culum recommendations [4]. A software project allows the students to integrate and to practice

what they have learned in the classroom. Furthermore. certain skills that are important to

software engineers can be more naturally acquired through involvement in a software project than

through normal coursework. To reap the maximum benefits from software projects certain

requirements must be imposed. We discuss below the requirements that we feel are desirable in

producing educationally meaningful software engineering projects.

1) The project should be as realistic as possible. This is probably the most universally-agreed

on requirement by software engineering educators. The problems to be tackled in a project

should reflect the scale and complexity of the types of problems solved in the real world.

Many significant software engineering issues usually are not addressed by simple or

artifiCially created projects. Jensen. Tonies. and Fletcher [4] point out that projects that are

simple enough to complete in one quarter are generally too simple to allow the student to

gain much experience in the application of the problem-solving techniques learned during

his regular classwork. Problems from industry tend to meet the realistic requirement

because the problem creator is not constrained by the time limits of a semester or the

knowledge of student education levels.

2) The project should provide experiences in all the major stages of a software life cycle from

requirement analysis and specification through design. implementation. verification and

validation. and finally to maintenance. A student should not be exposed to just some stages

of the lifecycle because the production of reliable and qUality software requires the proper

interaction of the work done in all the lifecycle stages. Admittedly. owing to time con

straints the maintenance phase is usually ignored or slighted.

287

www.manaraa.com

3) The project should emphasize team effort in contrast to individual work that is invariably

stressed in a classroom environment. In fact, experience as a team member in a program

mer team should be one of the educational objectives of any software engineering program.

To do this properly the project must again be of significant size and complexity so that it is

amicable to a team approach.

4) The project should not consist of just routine busy work or involve obsolete ideas, tools,

and teclmiques. Ideally the project should involve the leading edge of software engineering

development and should include state-of-art technology. Since we are training future

softv,'are engineers it is important that the students be exposed to problems that are currently

facing the industry. On the other hand, the project should not be a pure research problem

because the goals of such projects are difficult to define, predict, and obtain (especially

given educational time constraints). We feel the best projects should require the students to

do some library research and then develop and· implement a solution approach by applying

their ingenuity and previous experience. Library research is important because it acquaints

the students with the technical literature, published results from similar projects, and the

operations of modem research tools, e.g., DIALOG.

5) The project should provide ample opportunity in the training of communication skills, both

oral and written. Good communication skills have long been recognized as essential for

software engineers. A software project is a natural place to provide such training because of

the many types of communication that are needed through out project development: from

the preparation of user requirements, to the presentation of a design for review, to the docu

mentation of the final product.

The software project requirements listed above are certainly stringent and are not easily met

in a typical undergraduate software engineering program. In the next section we describe the

approach taken by Harvey Mudd College in obtaining software projects that meet these require

ments.

288

www.manaraa.com

Ill. HMC Clinic Program

A detailed description of the organization and operating procedures of the HMC Clinic pro

gram has been given by Busenberg and Tam [5]. In this section we provide the background and a

brief summary of the Oinic program followed by a description of four sample software engineer

ing projects that were undertaken in the last two years.

A. Background and Summary of the Qinic Program

Harvey Mudd College is a coeducational, undergraduate college of engineering and science

with 520 students. The college emphasizes educating students not only in technical subjects, but

in the humanities and social sciences as well. One unique feature of Harvey Mudd College is its

Qinic programs (Engineering Oinic and Mathematics Oinie), introduced into the curriculum

over 20 yean; ago. Every September about 30 teams, composed of three or four junior and senior

students together with a faculty adviser, begin work on professional design and development pro

jects for clients from industry and government. These clients pay a fixed fee (approximately

$25K) for work by the student teams on current problems that the company needs solved - one

team per problem, although sometimes one company has more than one project. Clients agree to

appoint a company liaison who meets with team members and faculty advisers at least once a

week to offer clarification and direction. Thus, there are three principle participants in each clinic

project: HMC student team, HMC faculty adviser, and company liaison.

The hands-on clinic setup is designed chiefly to expose undergraduates to the realism of

engineering practice. The clinic idea brings together the best elements of practice schools,

cooperative programs, and the more common closed-end school projects. It also takes a page

from the clinic practice setups that teach undergraduates at medical schools.

The students receive regular course credit for their participation in a clinic project (three

unit course per semester), and the faculty adviser is provided with some release time for each pro

ject that he or she directs. The clinic project is an integral part of the program of all students

majoring in either engineering or mathematics with a computer science option (HMC does not

have a separate major in computer science). Normally, juniors take one semester of clinic, while

seniors take two semesters of clinic. Oients expect 800 to 1,200 manhours per school year per

project team.

289

www.manaraa.com

To insure that clinic projects appropriate for software engineering education are obtained

the members of the Computer Science Department work together with the Clinic Directors

(engineering and mathematics) in contacting potential clients and in negotiating the individual

projects.

B. Some Sample Software Projects

To give an idea of the type of software engineering projects in which our students are

involved we describe below four of the projects that have been undertaken in recent years. All

these were 9-month projects. As is true for most of the projects. these projects covered the major

phases of the software lifecycle from the development of the requirement specifications. through

design. implementation. testing. to the final delivery of the product. The maintenance phase is

the only phase omitted.

1) The development of a user-friendly interface for a large simulation program [6]. This pro

ject involved the design of user-friendly interactive screens on CRT terminals to input large

amounts of data for an existing simulation program. A software tool. written in Fortran 77.

was developed to allow the user to define and manage data input screens.

2) A survey of the current state of parallel processing and the implementation of a parallel

radar tracking algorithm [7]. The parallel processing survey served as the research phase of

the project and helped the team choose an appropriate implementation model. and the

requirements specification for the parallel radar tracking algorithm. The implementation

applied to a specific type of radar tracking problem. decluttering. and was coded using the

Ada tasking facility for a shared memory Multiple Instruction. Multiple Data multiproces

sor. The parallel implementation was simulated using a VAX 1l{l50 and succeeded in

detecting true targets comparable to an existing sequential algorithm.

3) The development of a user friendly software interface between a commercial database

management system and a commercial software graphics package [8]. The project was

guided by a list of features specified by the client as necessary in the final software package.

The team followed a software development cycle that was standard to the client company.

The final software package was written in a combination of C. Pascal. and languages inter

nal to the commercial packages.

290

www.manaraa.com

4) The development of an Ada implementation of the CAIS (Common APSE Interface Set) for

the iAPX432 [9]. Two parallel tasks were accomplished by the team: analysis and imple

mentation of the CAIS node model in standard Ada and acting as a beta test site for the

iAPX432 Cross Development System.

IV. Participants in a Software Engineering Clinic Project

As mentioned above there are three principle participants in a clinic project: the client com

pany and liaison, the project team, and the faculty adviser. Each of these groups has particular

responsibilities and gains particular advantages from a chosen clinic project.

A. Qient Company and Liaison

Each client company sponsoring a clinic project must give careful thought to choosing both

the clinic project and the clinic liaison. Over the years we have developed a few do's and don'ts

that we encourage a client company to consider when choosing a project.

• Don't give the clinic an impossible dream. Students need to be motivated by both excite

ment and by achievability. The holy grail type of project maybe exciting, but is probably

not achievable by a student team in nine months.

• Don't choose a project with a long learning curve. If it takes years of experience before the

problem can even be understood, then the clinic team will probably spend all nine months

just learning background material.

• Don't choose a project that is in the company's critical path. The clinic team should not be

put into a position where if they fail to complete the project the client company has serious

problems.

• Do's - the clinic project should be something that the company really wants and cares

about Something that the clinic team can either finish or that can provide a solid founda

tion from which the company can continue at a later date.

• Do's - the most important point in considering a project is to choose a project in which the

company has a continued interest and to which the company is willing to assign an active

liaison.

291

www.manaraa.com

The liaison plays an important continuing role in the conduct of a clinic project. The

liaison is in the critical position of advising, directing, and evaluating the ongoing work of a

clinic team. His position is one of customer to the clinic team, but not just a demanding customer

such as might be found in industry. Rather, the liaison must recognize the inexperience of the

team in developing software, and together with the faculty adviser, the liaison must continually

provide technical assistance to the~. Regular communication (ideally, once a week) between

the liaison and the team is necessary to keep the project on course (weekly meetings with the

liaison, team, and faculty adviser are encouraged).

The liaison represents the client company's needs, but must also serve as a source oftechni

cal information. One of the worse things that can happen to a clinic project is to have a liaison

who has neither the time nor aptitude to assist the clinic team. Teams with inactive liaisons tend

to flounder in a sea of technical and administrative problems. An active liaison who acts as both

customer and technical adviser provides students with the experience of meeting deadlines and

responding to changing customer needs.

B. The Project Team

Obviously, it is the performance of the team that eventually determines whether a clinic

project achieves its objectives. Students indicate a preference for particular clinic projects, but it

is not UInlSUal to have students inexperienced in the particulars of their clinic project During the

first few v.'eeks of the fall semester the students organize as a team and in discussion with the

faculty adviser, a team leader is chosen. The team then prepares a written proposal in response to

the client's problem statement. This proposal is usually developed in close communication with

the liaison. After numerous iterations the proposal becomes the contract between the client and

the team. Normally, the team establishes two to three weekly meeting times: one meeting with

the adviser, liaison, and the team; one meeting between the adviser and team leader; and working

sessions for the team. It is imperative to the success of the project that meetings be held and that

the appropriate parties be present. Students must view the scheduled meetings as course times

with required attendance.

Teams proceed on their own schedule (part of the proposal) towards completion of the pro

ject. Team members immerse themselves in all the professional activities that enable the

292

www.manaraa.com

spontaneous practice of management, interpersonal relationships, ethics, and job perfonnance.

The team reports orally at three scheduled technical sessions during the year: fall, spring, and

end-of-the year. These presentations are given to an audience composed of faculty, students, and

members of client companies. Besides the proposal, there are two written reports, mid-year and

final. The mid-year repon is a status repon generated before the end of the fall semester. The

content of this repon depends on the team's progress, but usually includes the team's written pro

posal and the project requirement specifications. The final repon summarizes the team's effort

for the entire year and includes the requirement specifications, design specifications, user manu

als, implementation documentation, and code. It is the team's responsibility to execute the work;

to interact among themselves, vendors, liaison, and faculty adviser; and to manage the project

such that successful completion is assured.

C. The Faculty Adviser

The faculty adviser plays numerous roles in the clinic project: senior project management,

contract management, technical supervision, but never team member. As senior project manager

the faculty adviser insures that the team maintains its technical direction and schedule. He moni

tors each team member's activities and progress, insuring that team members are actively pursing

the project goals. Most advisers hold a weekly meeting with the team leader. During these meet

ings the adviser and the team leader review the team's progress during the previous week and dis

cuss (not set) goals for the current week. The word discuss was used because it is imperative that

the adviser not dictate the team's activities, but only provide inputs to the team leader. it is the

team's project, not the faculty adviser's.

The other important weekly meeting that the adviser attends is the team meeting with the

liaison. It is at this meeting that the adviser acts as a contract manager smoothing out the rough

points between the team's project proposal (contract) and the interpretation and changes

requested by the liaison. The adviser has the experience to evaluate what are realistic goals for a

particular project.

Finally, the third hat the adviser wears is that of technical superviser. Whenever any

member of the team encounters technical obstacles that he cannot handle, the faculty adviser

steps in and trys to assist the student. Occasionally, faculty advisers give short seminars on some

293

www.manaraa.com

technical material that the students have not encountered in their course worlc..

V. Advantages of the HMC Software Engineering Clinic

Basically, the Clinic program is the reverse of the traditional industry cooperative programs

or intership programs in which students are sent to a sponsoring company for a certain period of

time. Instead, our program brings industrial problems and experience onto campus. There are

several advantages to this approach for the students and for the college:

1) A much larger number of students can participate in the program. 1be experience not only

benefits the students. but also the faculty members involved.

2) Since students participate in the program as part of their regular course load, their academic

education is not interrupted.

3) The faculty has much better control of the types of training and education that the students

receive.

4) The college benefits financially from the fees paid by the client companies for the projects.

This allows the college to increase its equipment and thus to attract additional clients.

The client also gains numerous benefits by having his project done at HMC.

1) Establishes ties with the academic community. A clinic project may provide a way for the

client and HMe to share in other academic research efforts.

2) Provides the potential for the client to influence HMe towards the client's approach to

software development For instance. a previous clinic client required that DeMarco's struc

tured analysis and structured design techniques [10] be used during the project. This

allowed. HMe students to reviewed actual implementation of techniques they had studied

and allowed the client to have an unbiased reviewed of the client's implementation of

DeMarco's techniques.

3) Provides a solution to a problem that the client may have neither the resources nor the time

to complete. The project may also be restricted to a prototype or feasibility study leading to

future internal client efforts.

294

www.manaraa.com

4) Provides an opportunity for the client to evaluate all students and to recognize and recruit

top students more effectively. This is especially effective for students that do not have a

high grade point average. but who may excel in the work place. Also. all clinic presenta

tions are open to all clients. Thus it is possible for client representatives to review other

clinic projects and to approach the students involved in those projects. About 70% of HMC

students seeking employment upon graduation are hired by companies sponsoring clinic

projects.

VI. Conclusion

The Clinic program has shown itself to be an ideal environment for supporting the software

project that is needed in software engineering education. It provides an environment in which

students can obtain truly valuable experience in the practice of software engineering concepts for

the solution of real-world problems. We have discOvered that overall there are two key facets to

a successful clinic project: good liaison and good project. As mentioned above. one of the most

severe problems for a clinic project to overcome is an inactive liaison. The only real contact the

students have with the sponsoring company and in particular the company's attitude towards the

project is the liaison. Almost all projects have some liaison problems because liaisons have many

tasks within their company. One of the most common causes of liaison demise is assignment to a

proposal team or change of job function. It is up to the faculty advisor to insure that adequate

liaison activities continue during such periods. Realistic software engineering projects were ini

tially a problem. But through active participation by the faculty. we have been able to communi

cate with industry about appropriate project content. It has never been a problem getting projects

from industry (probably due to the shortage of software engineers). only getting projects that can

be completed in the nine months. In the Clinic program it becomes the joint responsibility of

faculty and the Clinic Director to communicate with industry about the appropriate content for a

Clinic project. Overall the HMC clinic approach allows the requirements for software engineer

ing projects to be satisfied: realistic projects provided by client companies; projects encompass

ing the entire software lifecycle; and team oriented projects requiring development of communi

cation skills.

295

www.manaraa.com

References

[1] S. Henry, "A project oriented course on software engineering," SIGCSE Bulletin, vol. 15,
no. I, pp. 57-61, Feb. 1983.

[2] B. Barbara, "Integration of methodology and tools: an approach to teaching system
development," SIGCSE Bulletin, vol. 16, DO. I, pp. 10-14, Feb. 1984.

[3] D. L. Carver, "Software engineering for undergraduates," SIGCSE Bulletin, vol. 16, DO. 3,
pp. 23-25, Sept. 1984.

[4] R. W. Jensen, C. C. Tonies, and W. I. Fletcher, "A proposed 4-year software engineering
curriculum," SIGCSE Bulletin, vol. 10, DO. 3, pp. 84-92, Aug. 1978.

[5] S. N. Busenberg and W. C. Tam, "An academic program providing realistic training in
software engineering," CACM, vo1. 22, No.6, pp. 341-345, June 1979.

[6] L. Moyal, et. aI., User-friendly Interface Program, Engineering Clinic Final Repon, Har
vey Mudd College, Oaremont, CA, June 1986.

[7] W. Wenjen, et aI., Algorithms For Parallel Encoding, Engineering Clinic Final Report,
Han·ey Mudd College, Oaremont, CA, June 1986.

[8] D. Brown, et aI., Integrated Graphics Information Processing, Engineering Oinic Final
Repon, Harvey Mudd College, Oaremont, CA, June 1985.

[9] K. F1uechiger, et aI., Ada Implementation of eAls on the iAPX432 Cross Development
System, Engineering Clinic Final Repon, Harvey Mudd College, Oaremont, CA, June
1985.

[10] T. DeMarco, Structured Analysis and System Specification, Prentice-Hall,Inc, Engle
wood aiffs, New Jersey, 1979.

296

www.manaraa.com

A Project-Based Software Course:
The Myth of the IIReal-World ll

Dr. Pierre-No Robillard,
Dept. of Electrical Engineering

Ecole Polytechnique de Montreal

Abstract

We discuss an approach to project-based software engineering courses.
Considerations based on experience illustrate the myth of the real-world
environment to project-based course in university. Characteristics of real
projects are outlined and conditions that make them applicable are stressed.
The experience with a real project-based course is briefly described.

Index Terms Project-based course

1. Introduction

Software Engineering
Cooperative team approach
Software tool
Project environment
High-level documentation
Software engineering education

There is a strong need in the software industry for students with training extending

beyond programming ability. The responsibilities and challenge of teaching software

engineering lie with the universities [IJ. Students must understand why the

programming of a system is not the real problem and must have enough background to

deal with projects involving software engineering.

Few textbooks are available on the topic and they rarely present well-defined solutions

www.manaraa.com

to the problem of teaching software engineering [2-10]. There are currently no known

methods of solving the problem of teaching Software Engineering other than a list of

recommendations and suggestions for improving the process of software development.

We believe that students should be made aware of the problems associated with

software development projects and that they should realize for themselves what it

means to apply software engineering practices [11].

Principles of software engineering can be learned from conventional lectures based on

textbook material or can be learned by experience. Because the field of software

engineering is a broad one and the techniques are fluid, many instructors feel that

software engineering should be taught through project-based courses [12]. It is often the

goal in software engineering courses to give the students not only a broad background

in software engineering issues but also real-world, hands-on experience in the design and

integration of large systems.

One of the difficulties associated with teaching software engineering in the university

is how to choose an appropriate software project. It is generally believed that the

projects chosen have to be representative, but without being so long as to extend

beyond one or two semesters. On the other hand, software engineering principles are

most needed when the size and complexity of the software project are so great as to be

beyond the comprehension of any single person (including the instructor!) [13].

Students, in any case, must gain experience in developing a system using the team

approach. Many approaches to project-oriented courses have been described in the

literature, and they tend to fall into two categories [14]. One is based on multiple

groups working on the same project while the other approach involves each group

working on a different project. A later section of this paper outlines the advantages of

having the entire class work on a project cooperatively.

Students should be made aware of the fact that there is something beyond structured

programming, that they could be involved in a software project that goes beyond their

understanding and that methodologies must be applied in order to manage the project.

298

www.manaraa.com

They do not actually manage the project but they are kept continuously informed

about how it is being managed. A software engineering course should not be geared

toward turning out project managers, but toward developing an understanding of

software principles [15].

This paper is a report of four years' experience with project-based software

engineering courses at Ecole Poly technique de Montreal, courses designed in an attempt

to deal with this problem.

2. The "Real-World" Myth

Very often project-based software courses aim at giving participants real-world

experience. The real-world approach can be misleading when applied to the project

based software course. The following considerations illustrate this point.

A. Real teams

In the real-world you rarely find teams of JUNIORS only. Ideally, .you would have a

mixture of senior and junior members. The juniors learn from the others, have less

responsibilities and their abilities can be tested without jeopardy to the project. The

seniors receive the recognition due to them, are more confident, and are willing to

assume some leadership. They know how to do the job themselves and are willing to

teach the juniors how to do it. There is no classroom anywhere, however, with this

team structure. In the classroom there is one boss, the instructor, and a bunch of

juniors. Moreover the "boss" is not a real boss, since he will keep his job even if the

project never comes to fruition.

B. Real time

The real-world is a full-time job. It is everyday interactions with other fellow workers.

It is special meetings in the middle of the day to solve a technical or specification

problem. It is social gatherings to ease tensions among team members, who will be

299

www.manaraa.com

working together full-time for months and sometimes years. A typical classroom team

meets once a week for a few hours. Timewise, a classroom team adds up to only 25%

of time spent in a full-time real-world team, based on a 15-week (3 hr) semester course,

and assuming that every student spend 2 hrs of personal work for each hour in the

classrooms.

C. Real motivation

The project is a major concern for real-world team members. It is a job preoccupation

that is part of the work function and part of the individual's career track. Most

students view a course project as just one course among others. Their main concern is

the mark they will get for it. This mark is only a portion of the total grade for the

semester and sometimes is not very significant as far as earning the degree is concerned.

D. Real backgrounds

Real-world team members are selected on the basis of background and skills. One of

the harsh realities of a project course if that the backgrounds and abilities of the

students in anyone semester are quite variable, and subject to the vagaries of the

annual registration process. These considerations suggested to us that we should not

attempt to simulate real world conditions in classroom software project. If we want the

students to have real-world experience we should explore other avenues like letting them

go out for a full-time one-semester practium in a software shop. The university is not

the appropriate forum for teaching real-world environmental issues to software

engineers: its role should lie in other directions.

3. The real project

Our contention in the previous section is that simulating the real-world environment

surrounding software engineering projects in the university is utopic. A real-world

project, however, is appropriate [16, 17].

300

www.manaraa.com

A. What is a "real-world" project!

It could be described as a project with real-world users! Although that is true, it is also

a project that requires expertise going beyond anyone-semester course. Wit,hout

pretending to define the new software life cycle, we could nevertheless identify the

following steps as being typical of real world projects:

Problem Definition (including interviews with the user)
Analysis
Data Base definition
Architecture Design
Detailed Design
Programming
Module Testing
Module Integration
System Testing
Documentation
Maintenance

A project where all the students can do all the steps in one semester can not be too

big so that the questions may legitimately arise as to whether it is meaningful at all.

Splitting up the steps among team members, however, is no solution. Most of the steps

are sequential and cannot be performed simultaneously, and only one team could be

working while other teams are twiddling their thumbs waiting for data and reports that

might not be satisfactory anyhow.

In a university environment only part of a real project can be attempted. It is up to

the instructor then to decide which part of the project will meet the course

requirements.

For a project to be real, however, it must be completed. A course limited to problem

analysis or data base definition is merely an academic exercise unless the project is

actually completed. The nicest architecture designs we have ever seen are the ones that

have never been implemented. It is very easy to design something that will never be

tested.

301

www.manaraa.com

The students should know whether they will be evaluated on the quality of their

design or the quality of the product they design. Therein lies the whole difference

between a course in software design and a project-based course in software engineering.

B. Do we need a real project!

The question could be asked whether we need real projects at all in software engineering

courses. A real project is not needed when the objectives of the courses relate to some

technical aspect of software engineering, (ex. new language, design techniques, use of

tools, etc.). It is actually better to let the students on their ability to use the techniques

taught rather than to let them believe that a real-life real project is that simple.

A real project is needed, however, when we want the students to understand the

mechanisms involved in software engineering and to address the problems related to the

software processes which should be oriented: managing, planning, organizing, tooling,

scheduling, controlling, documenting, testing, etc. [10].

Real projects require a substantial amount of effort by the instructors and a lot of

resources. We believe that project courses based on real projects should be kept for

mature students in their final year or for graduate students.

4. The cooperative team approach

The point we address in this section is how to manage a real project in the university

setting. The project should be organized in such a way that the students can do the job

without being in the best environment for doing so. The method that follows is the

fruit of four years' experience with such courses. All the students are at the same level:

detailed design, programming and testing. The course is restricted to a maximum of 20

students. A small test at the beginning of the course allows us to separate out students

302

www.manaraa.com

with gaps in their background. We find that a sound mechanism for selecting students

is crucial to the success of the course. We ask the students to apir off with a teammate.

We found it unnecessary to try to match up strong students with weaker ones, although

we had all the information needed to do so. Motivation has proven to be a much

stronger impetus for success than good grades.

Each pair of students is assigned a task which constitutes a part of the whole project.

We call this the cooperative team approach. Each team works on its own project,

which is part of the greater whole. Each team must interact with the other teams in

order to get information as the project proceeds.

One of the teams is called the supervisor group. They are the ones responsible for

integrating all the modules. A senior analyst is also assigned to the project. He is a

professional with experience in similar projects, and is available for consultation 3 hours

a week.

We believe that students working on a cooperative team project will learn the

meaning of the following words, despite not working in a real-world environment:

project leader
software quality control
milestones
documentation
software integration and testing
schedules
data base integrity

The understanding should be among the objectives of a software engineering course.

5. Project description

This section is a report on a project used in a graduate course at ECOLE

POL YTECHNIQUE DE MONTREAL. The project was to design a management

system for swim team competitions. Officials from the Quebec Swimming Federation,

303

www.manaraa.com

the organization responsible for swimming events in Quebec, defined the project for us.

They also supplied a booklet containing the rules governing swim team competitions.

The data base was wholly designed by the professors involved in the course. All files

and records were done in dBASE ru™!. The software package was to be written in

dBASE IIITM and executable on an mM-PC with standard options (256K, 2 disk drives,

Epson FX-80 printer).

The software would have to do all the steps required in planning, preparation, record

keeping and wrapping up a swimming competition. Special care would have to be given

to screen design [19, 20J. It had to be user-friendly because the users were not expected

to know anything about computers. The package also had to be reliable and efficient.

Project analysis was done by the Ecole Polytechnique professors and the project was

divided into small modules. Integration of the modules was done by a course assistant

who did not write any modules except for the main supervisor, which was menu-driven.

The students had to do the module analysis, its detailed design, programming testing

and integration work. The system analysis, data base definition, and architecture

design were done by the instructors. The database was designed with the dBASE III

language. The architecture design was done by means of the EXCELERATOR™2 [21J

tool and the students used the SCHEMACODE™3 tool to design and document their

programs [211. The project was big enough so that anyone group of students would

not be able to solve the whole project by itself.

Final integration

One week after the end of the course, the students were invited to the presen~ation of

!DBASE m™ is a trademark of ASHTON-TATE

2EXCELERATOR TM is a trademark of INDEX TECHNOLOGY

3SCHEMACODETM is a trademark of SCHEMACODE INTERNATIONAL

304

www.manaraa.com

their collective product. Integration of the individual modules therefore had to be done

first, and all modules were integrated into the complete system. This undertaking also

served as a means of evaluating the students work [22, 23]. No hand-written code was

accepted. Students were required to hand in only high-level documentation which was

stored on diskettes. All source code was automatically regenerated by

SCHEMACODE™ from the high-level documentation. Modules were then tested and

integrated. Integration tests were conducted.

Almost all the students attended the integration presentation. The product was

presented on a large screen in front of the audience. Special guests are usually invited,

officials or typical users. This final public presentation of the product has proven to be

a very strong incentive for good work, and contributes to maintaining a high level of

motivation. We find that this final presentation is a must, to make students believe in

the reality of the project. Finally the software was successfully used for managing the

Canadian Pan Pacific trials swim meet set the Olympic Pool of Montreal.

6. Concluding remarks

Software developed within a project-based course is not ready for commercial use. To

make the software commercial, it would need a few more modules, more testing and

validation, a professional user manual, consistent screen design, a consistent file

management system, etc.

The purpose of the course was not to get a software package ready for the commercial

market but to incorporate software development as part of a real project. The main

reason why it is not ready for commercial use is that we are not in a real-world

environment. Project management is not geared toward the Production of commercial

software. Project staff numbers are fixed and likely to decline during the semester

(students dropping out), meeting hours are set and limited to 3 hours a week, the

deadline is irrevocable and the budget is simulated.

305

www.manaraa.com

The purpose of the project was for students to learn to produce real software, not

commercial software. They need to work in teams so that they share their knowledge,

skills and the like, in other words so that they learn from others. Team projects help

students to learn faster (ideally), and not to do bigger software projects. This suggests

that the software project should be quite independent of course enrollments. Students

should understand their own assigned modules clearly and they do not have to and

preferably ought not be able to understand the details of the whole project. The

students are likely to develop an understanding of and feel for the need for methodology

and general principles.

Sometimes, the availability of human and physical resources put severe constraints on

the choice of a project. It is our belief that it is more motivating and informative for

the students to live with strong resource constraints while developing a real software

product than to limit themselves to producing an artificial sub-product.

Acknowledgments

We thank anonymous referees for their helpful comments. We are grateful to the

members of the Federation de Natation du Quebec for their collaboration at the arly

stage of this project.

306

www.manaraa.com

References

1. Robillard, P.N., Dupras, M. and Mili, A., "Software Engineering Education
in Academia and Industry Synthesis of Some Practical Experience",
Proceedings 4th World Conference on Computers in Education WCEE/87,
North Holland, July 1985, pp. 753-756.

2. Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall,
Inc., 1975.

3. Tauseworthe, R.C., Standardized Development of Computer Software,
Prentice-Hall, Inc., 1977.

4. Jensen, R.W. and Tonies, C.C., Software Engineering, Prentice-Hall, Inc.,
1979.

5. Peters, L.J.,Software Design: Methods and Techniques, Yourdon Press, 1981.

6. Fox, J.M., Software and its Development, Prentice-Hall, Inc., 1982.

7. Turner, R., Software Engineering Methodology, Reston Publishing Co., 1984.

8. Lustman, F., Managing Computer Projects, Reston Publishing Co., 1985.

9. Robillard, P.N., Le logiciel de sa conception a sa maintenance, Gaetan Morin
Ed., Quebec, 1985.

10. Thayer, R.H., Pyster, A.B. and Wood, R.C., "Major Issues in Software
Engineering Project Management", IEEE Transaction on Software
Engineering, Vol.SE-7, No.4, July 1981, pp. 333-342.

11. Shooman, M.L., "T~e Teaching of Software Engineering", ACM, SIGCSE
Bulletin, Vo1.15, No.1, February 1983, pp. 66-69.

12. Henry, S., "A Project Oriented Course on Software Engineering", ACM,
SIGCSE Bulletin, Vo1.15, No.1, February 1983, pp. 57-61.

13. Carver, D.L., "Comparison of Techniques in Project-Based Courses", ACM,
SIGCSE Bulletin, Vo1.17, No.1, March 1985, pp. 9-12.

14. Sanders, D., "Managing and Evaluating Students in a Directed Project
Course", ACM, SIGCSE Bulletin, Vo1.16, No.1, February 1984, pp. 15-25.

307

www.manaraa.com

15. Woodward, M.R. and Mander, K.C., "On Software Engineering Education,
Experience with Software Hut Game", IEEE Transaction on Education,
Vol.E-25, No.1, February 1982, pp. 10-14.

16. Ballew, D., "A Senior Design Course for Computer Science", ACM, SIGCSE
Bulletin, Vo1.18, No.1. February 1986, pp. 131-133.

17. Riley, M.W., "Phases Encountered by a Project Team", IEEE Transactions
on Education, Vol.E-23, No.4, November 1980, pp. 212-213.

18. Galitz, W.O., Handbook of Screen Format Design, QED Information
Sciences, Inc., 1985.

19. Morland, D.V., "Human Factors Guidelines for Terminal Interface Design",
Communications of the ACM, Vo1.26, No.7, July 1983, pp. 484-494.

20. Robillard, P.N., "Schematic Pseudocode for Program Constructs and the
Computer Automation by SCHEMACODE" Communication of the ACM,
Computing Practices, Vo1.29, No.ll, November 1986., pp. 1072-1089.

21. Collofello, J.S., "Monitoring and Evaluating Individual Team Members in a
Software Engineering Course", ACM, SIGCSE Bulletin, Vo1.17, No.1,
March 1985, pp. 6-8.

22. Woodfield, S.N., Collofello, J.S. and Collofello, P.M., "Some Insights and
Experiences in Teaching Team Project Courses" ACM SIGCSE Bulletin,
Vo1.15, No.1, February 1983, pp. 62-65.

308

www.manaraa.com

SECTION II

PART 3

GRADUATE LEVEL SOFTWARE ENGINEERING EDUCATION

At the present time, the primary emphasis in the software engineering
education community is on graduate level education and industrial train
ing. Part 3 is concerned with graduate level education. Topics presented in
the five papers in this Part include education for research in software en
gineering; accommodating the evolution in software engineering education;
the evolution of Wang Institute's software engineering education program;
teaching a software design methodology; and software engineering at Mon
mouth College.

The paper, "Education for Research in Software Engineering," was writ
ten and presented by Professor Caroline Eastman of the University of South
Carolina. A synopsis of her presentation and a question/ answer session are
included at the beginning of Part 3.

www.manaraa.com

Synopsis of Presentation

Caroline M. Eastman

Caroline Eastman presented the main points in her paper, tied them
into some of the other presentations at the workshop, and provided some of
the background and rationale for the ideas presented in her paper. Among
the points she made in her presentation were the following:

• Software engineering can be described as a science of the artificial. It
involves the design and study of artificial designs.

• Software engineering, in terms of the structure of the community,
could be classified as a professional adhocracy. This is a term used
by sociologists of science to refer to one form of a loosely structured
scientific community.

• One of the things that a scientific community does is exercise control
over research activities.

• Mechanisms of control include textbook development and selection,
employer directions, funding agency priorities, and peer review of
papers and proposals.

• Her approach advocates an emphasis on design, which is practical
because it tends to insure a steady flow of new designs. Moreover, it
encourages the skills and attitudes needed in design.

• Rather than dealing with an unending stream of design languages, we
want to be able to compare them.

• Performance evaluations can be used to compare alternative designs.

• Theoretical analysis can be used to study the efficiency of algorithms.

www.manaraa.com

• Two problems that exist with the use of information resources are that
people are sometimes not familiar with previous work in an area and
that frequently, people are unfamiliar with related work in another
area. Occasionally, people in academic environments attack problems
which have already been resolved.

• It is important to take a broad view of information resources.

• Information resources include not only research literature, but also
information about products, information about patents, and profes
sional information about companies, standards, activities, and pro
fessional societies.

• A problem with information resources is that education in science and
engineering relies almost exclusively on the use oftextbooks. This can
encourage the overuse of textbooks.

• Standard textbooks should be used as an initial source of information,
not as the last word.

• Methods for the study of human factors include controlled experi
mentation, surveys, protocol analysis, case studies, participant obser
vation, and introspection.

• In terms of research, she feels that the right approach is to have more
interdisciplinary teams of people doing software engineering research,
rather than trying to make programmers out of psychologists or psy
chologists out of programmers, for example.

312

www.manaraa.com

Questions for Caroline M. Eastman

Bob Glushko: You basically were emphasizing how you would take
computer science people and teach them to do research in software engi
neering. You alluded to some of the problems of needing to know a lot
about statistics and experimental design and so on. I've noticed the oppo
site problem, where a lot of research in this area is being done by people
who are social scientists, who don't have a lot of knowledge about com
puter science. This suggests that the right approach in many areas is to
have more interdisciplinary teams of people doing this SE research.

Caroline Eastman: I would agree that in many areas interdisci-
plinary collaboration is needed at this point. Yes, my emphasis was on
people with a computing background carrying out research, as opposed to
people who have come from other disciplinary traditions.

Bob Glushko: I've seen methodologically impeccable work by a psy
chologist that is naive about software engineering, and I've seen good work
by computer scientists,that is attacking the right problems, but which is
statistically and empirically naive.

Caroline Eastman: That's one reason why I was trying to make
a distinction between the quality of the work and the significance of the
work.

www.manaraa.com

Education for Research in Software Engineering

Caroline M. Eastman
University o/South Carolina

Abstract. Graduate education serves as preparation/or research as well as prac
tice. However, this aspect 0/ education in software engineering has often been
given little emphasis. Several curricular issues involved in education as prepara
tion for research are considered here. They include mathematical/oundations,
statistics and experimental design, use 0/ in/ormation resources, and research
methods/or the study o/human/actors.

1. Introduction

Much of the emphasis in curricular development for software engineering
programs has appropriately been on education for professional practice. However,
this aspect should not be allowed to completely overshadow the traditional role of
graduate programs, especially at the doctoral level, of education for research as
well as practice. Some of the curricular requirements to support this role are dis
cussed here.

2. What is Software Engineering?

The computer-related disciplines, including software engineering, computer
science, computer engineering, and information science, are all sciences of the
artificial [32]. Research in these areas involves the creation and study of designs
for computer-based systems. The objects of design include algorithms, languages,
hardware architectures, systems software, software tools, and application systems.
It is not always possible or even desirable to draw clean lines separating these dis
ciplines. However, the focus of software engineering is on software systems
which are technologically and economically feasible at the present time.

The relationship between software engineering and computer science is often
compared to that between electrical engineering and physics or chemical engineer
ing and chemistry, e.g. [10,22]. These analogies are weak since both physics and
chemistry are natural sciences and computer science is not. The difference is
more subtle, involving different emphases within the design space and a different
mixture of research approaches. In addition, the field of computer science has
been more willing to accept any knowledge about the design space as a legitimate
goal, even if it involves designs which are currently impractical. (The nature of
the field of computer science is discussed by Traub [34].)

www.manaraa.com

3. Research in Software Engineering
Research in software engineering seeks to add to the body of knowledge

about software. This contrasts with development, which seeks to produce useful
products. There can be a close interaction, but they are separate activities with
separate goals. As Denning [5] points out, merely building systems is not experi
mental science. Software engineering is concerned with practical aims, and gradu
ate programs, especially at the masters level, are appropriately aimed at profes
sional practice. However, an emphasis on design and development to the exclu
sion of other concerns can easily give the impression that research in software
engineering consists primarily in the construction of bigger and newer systems.

Research involves not only the creation of designs but also their understand
ing. Because software engineering draws upon foundations from several discip
lines (e.g. [10, 22]), a variety of research methodologies are appropriate. The
study of designs can be approached from several directions: mathematical
theorems of properties or performance bounds, experimental observations of their
performance, and focused comparisons among design alternatives. Ferrari [14]
presents a strong argument for the inclusion of performance evaluation considera
tions throughout the curriculum; Graham [19] discusses the inclusion of perfor
mance evaluation in the software engineering curriculum. Gilb [17, 18]
emphasizes the importance of measurement.

Fairley [10] discusses appropriate research topics and methodologies in
software engineering and mentions four approaches in particular: "original contri
butions to knowledge, development of outstanding software artifacts, experimental
studies involving human subjects, and significant case studies of technological
and/or managerial issues." It is not clear what kinds of activities are included in
"original contributions to knowledge," since the purpose of experimental studies,
case studies, and even many design activities is also to contribute to the body of
knowledge about a specific subject.

At least four aspects of research projects can be considered in judging their
suitability as doctoral projects: topic, methodology, quality, and significance.

Topic. What area is investigated? What questions are asked?

Methodology. How are answers to the research questions sought? What
approaches are used?

Quality. How well is the investigation carried out? Are results clearly
presented? Is relevant literature cited? Is the methodology appropriately
applied.

Significance. Are the results new? Are they important?

In a scientific community there is generally broad agreement about what
topics and methodologies are appropriate in the area and about what standards of
quality and significance are to be applied.

Fairley [10] points out that topics and approaches appropriate for software
engineering may not be regarded as appropriate by researchers in traditional com
puter science programs. However, it is important to distinguish between topic and

315

www.manaraa.com

methodology. In addition, reservations about significance and quality should not
be confused with reservations about topic and approach. For example, a design
project may be objected to, not simply because it is a design, but because it does
not differ significantly from similar designs. A project involving case studies may
be objected to, not because it involves case studies, but because the research ques
tion addressed is unclear.

4. Education for Research in Software Engineering

Research in software engineering clearly requires a background in software
engineering with some appropriate balance of breadth and depth. However, it also
requires an understanding of the range of research methods appropriate in this
area. The question addressed here is the educational structure appropriate to sup
port adequate understanding of research methods. These problems are in large
part independent of the choice of specific subject topics chosen for required and
elective courses; this latter issue is not discussed here.

In a few cases examples have been chosen from the literature to illustrate the
need for increased emphasis on research methodologies. Of course, such anecdo
tal and isolated examples do not provide conclusive evidence of the extent of such
problems. There have been few comparative studies of research methodology in
the computer sciences; one such study involves approaches to the study of multiat
tribute file structures [7]. It is evidence from such studies that would be required,
but such methodological research is outside the scope of this paper.

Examples have been selected from recent issues of Communications of the
ACM and IEEE Transactions on Software Engineering. This approach to selecting
examples can be compared to the setting of traps for agricultural pests. The
discovery of such insect pests in a trap can be regarded as indicative of a problem,
even though further investigation is required to determine the extent of the prob
lem. It is all too easy to find examples of poor methodology in the unreferred
literature. And I observed many similar problems in research proposals submitted
to the National Science Foundation when I was Program Director for the Informa
tion Science Program. However, papers published in top journals are scrutinized
by reviewers and editors as well as authors and are generally held to fairly high
standards.

Four general areas are discussed here:

1. mathematical foundations

2. statistics and experimental design

3. information resources

4. methods for the study of human factors

The creation of designs is also an important aspect of research as well as
practice in software engineering. However, this topic has been extensively exam
ined in the context of software engineering curricula and will not be further con
sidered here [10, 11, 12, 13, 20, 22, 33, 35]. Simon [32] contains an extended dis
cussion of material appropriate for a science of design.

316

www.manaraa.com

4.1. Mathematical Foundations

This is an area in which current curricula provide reasonable support; this is
especially true for programs based upon a computer science foundation. A back
ground in discrete and continuous mathematics at the undergraduate level is gen
erally expected. Frequently at least some theoretical courses are offered at the
graduate level. This coursework provides both a background in specific useful
models and exposure to approaches involved in the use of such models in
research.

4.2. Statistics and Experimental Design

Mathematical proofs and software development can be done without a
knowledge of statistics, but understanding and performing research across a broad
spectrum of software engineering topics does require such knowledge. Ralston and
Shaw [31], who address the needs of practitioners rather than researchers, claim
that "A basic knowledge of statistics is essential to almost all aspects of work in
computer science." Practitioners need to be able to assess the claims made in the
research literature. Researchers need to be able to choose appropriate statistical
methods. Although it is possible to build interesting and novel systems without
statistical tools, it is not possible to do good experimental work without statistics.
Denning [5] issues a strong call for more attention to experimental methodology.

The statistical approaches used in the software engineering literature are often
unsophisticated, poorly chosen, or simply nonexistent. Examples of misapplication
include:

1. Misuse of measurement scales. For example, Fleming and Wallace [15]
point out an improper use of measurement scales in performance evaluation.

2. Comparing multiple alternatives using a series of pairwise tests. For
example, Konstaam and Wood [24] examine the impact of different counting
rules for operands and operators on software science metrics. Four different
approaches are compared by using t-tests for a series of pairwise comparis
ons; this is an approach warned against in introductory statistics texts.

3. Brute force correlations. If the purpose of data collection is largely
exploratory, a common practice is to run correlations on everything in sight.
Kearney et al. [23] discuss the problems associated with this practice in the
context of published experiments involving software complexity measures.

The misuse of statistics can be a problem, but perhaps the failure to use
experimental approaches at all when they are appropriate is an even greater prob
lem. For example, of the 57 published papers on multiattribute file organization
surveyed by Eastman [7], only 2 used statistical tests for hypothesis testing, even
though many involved implementation and collection of performance data. Both
Denning [5] and Ferrari [14] discuss the need for greater attention to experimental
approaches.

Courses in statistics are often recommended as requirements or electives in
curricula in the computer-based disciplines [2, 16,29,30]. The recommendations
for masters programs in computer science in Magel et al. [28] suggest one course

317

www.manaraa.com

in statistics as appropriate background for graduate study. Fairley [12] suggests
that the undergraduate background in mathematics should include probability and
statistics. Of course, "probability and statistics" is often implemented as probabil
ity. Despite the widespread recognition of the importance of statistics in curricular
recommendations, actual statistics requirements are far from universal. I am not
aware of any collected data on statistics requirements in computer-related pro
grams. However, in informal questioning I have found a few programs with
statistics requirements at the graduate or undergraduate levels. However, there
appear to be many more (across a broad range of qUality) that do not have any
specific requirements in this area.

4.3. Information Resources

Research builds upon the results of previous research. It is necessary to be
familiar with previous work related to current projects and to be able to use infor
mation resources to locate such work. Resources devoted to problems which have
already been solved are not available for new problems.

In general it is not possible or even desirable to completely survey all pub
lished literature that might possibly have some bearing on the problem under
investigation. The expectations of the research community largely detennine what
is regarded as an "appropriate" literature search. Neither computer science nor
software engineering have a strong tradition of scholarship. The scope of literature
searches is often quite narrow; it rarely extends beyond the discipline and is often
limited to a specialized subarea. (I have heard rumors of research labs where a
literature search is expected to include only previous work in the lab.) This prac
tice allows concentrated effort but often leads to limited vision and needless rein
vention.

It is generally expected that at least the major journals in the research area
should be examined. An example of failure' to adequately investigate even the
relevant core literature is presented by the papers referenced by Luccio [27], who
discusses methods for representing data items of unlimited length. He builds upon
earlier work by Baber [3], whose method largely duplicates that presented by Even
and Rodeh [9]. (Luccio cites both papers, as well as later correspondence discuss
ing the similarities.)

In addition, connections to relevant work in other disciplines are often disre
garded. An example is presented by work involving the estimation of block
accesses; this is an important problem in the implementation of database manage
ment systems. A survey of this work appears in [8]. Many of the models used for
this problem are occupancy models, which have been extensively investigated and
described in the probability and statistics literature. However, almost all of the
work described in [8] on estimating block accesses has been performed indepen
dently of the work on occupancy models; it has thus involved substantial reinven
tion.

Undergraduate curricula in software engineering and computer science rarely
provide opportunities for underwaduates to become familiar with the research

318

www.manaraa.com

literature. Kuhn [26] observes that scientific education in general relies almost
exclusively upon the use of textbooks, and that use of research literature is often
deferred until a graduate student actually begins research. Thus it is especially
important that such opportunities are provided in graduate curricula at both the
masters and doctoral level. The ability to effectively utilize the current literature
is specifically cited as a goal in recommendations for masters programs in com
puter science by Magel et al. [28]. Fairley [11] identifies the "ability to use
state-of-the-art tools and techniques" as a goal of masters programs in software
engineering.

4.4. Methods for the Study of Human Factors

Many research areas within software engineering involve studies of individu
als and groups. Examples in Volume 11 of Transactions on Software Engineering
include Adelson and Soloway [1], larke et al. [21], and Draper and Norman [6].
larke and his colleagues examine differences in subject use of a structured data
base query language and a restricted natural language interface. Adelson and
Soloway investigate individual programmer behavior during design tasks. Draper
and Norman discuss some of the issues involved in designing user interfaces.
There are a number of other system and language designs proposed in Volume 11
for which such evaluation might well be appropriate.

Such studies often draw upon methods widely used within the social sciences,
including surveys, controlled experimentation, protocol analysis, and participant
observation. The methods, problems, and limitations involved with such research
approaches have been thoroughly investigated within the context of the social sci
ences. It is worth noting that all three of the papers mentioned have coauthors with
training in the social sciences in addition to coauthors with training in the com
puter sciences.

5. Curricular Considerations

Education in research methods in the computer-related disciplines has been
largely relegated to on-the-job training during the writing of a thesis or disserta
tion. Additional perspective is assumed to be a by-product of graduate course
work. This approach has been more appropriate for mathematically oriented com
puter science programs than it is likely to be for software engineering.

There are several ways in which additional emphasis on research methods
could be incorporated into a graduate program in software engineering. At least
some statistics should be expected at either the undergraduate or graduate level.
Additional background in research methods can be incorporated in both formal
and informal settings.

Formal coursework traditionally covers a specific body of knowledge. At the
graduate level, it should also provide some perspective on how that level of
knowledge was achieved and how it can be extended. Thus textbooks should be
used that connect the information presented to the supporting literature. This is
true of many, but not all books, used in graduate level courses in computer-related

319

www.manaraa.com

disciplines. For example, Comer et al. [4] suggest Kroenke [25] as a text in a gra
duate course in database design. This book presents a very good introduction to
database concepts. However, it includes few references and is not structured in a
way which allows it to be used as an entry point to the current literature. Ferrari
[14] points out the advantages to be gained by including material on performance
measurement and evaluation throughout the curriculum rather than isolating it in
separate courses. In addition, research papers and experimental designs can be
assigned in addition to the more traditional proofs (in theory courses) and projects
(in everything else).

One problem with relying solely upon an informal approach is that the range
of research approaches used within software engineering is fairly broad. It is rea
sonable to expect faculty members to have expertise in the methods most fre
quently used in their specializations. But it is unlikely that faculty will achieve the
same level of expertise across the entire range of methods appropriate in software
engineering. And although the ability to use research literature is important in all
areas, but it is all too easy to find faculty members who are not familiar with many
important bibliographic tools, such as Current Contents or on-line databases.

An alternative or complement to an increased informal emphasis on research
methods within the current structures is to provide more formal training in at least
some aspects. Seminars or short courses in such areas as information resources,
research methods, or professional practice can fill some of the gaps. When I was a
graduate student in Computer Science at the University of North Carolina, the
department had seminars in both teaching and professional practice. However,
such courses do not appear to be common.

6. Conclusions
The recommendations discussed above include the following specific sugges-

tions:

1. Require at least some coursework in statistics and experimental design for
all graduate students at either the undergraduate or graduate level

2. Choose textbooks for graduate courses that provide good connections to
the research literature

3. Incorporate appropriate discussions of performance measurement and
evaluation in courses

4. Require a mixture of research papers and development projects appropri
ate to the goals of the program

5. Consider supplementing course work with formal instruction related to
research methods

320

www.manaraa.com

Bibliography

[1] B. Adelson and E. Soloway, "The role of domain experience in software
design," IEEE Transactions on Software Engineering, Vol. SE-ll(ll), pp.
1351-1360, November 1985.

[2] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L. Engle, and G. Stokes, eds.,
"Curriculum '78: recommendations for the undergraduate program in com
puter science: a report of the ACM curriculum committee on computer sci
ence," Communications of the ACM, Vol. 22(3), pp. 147-166, March 1979.

[3] R. L. Baber, "A method for representing data items of unlimited length in a
computer memory," IEEE Transactions on Software Engineering, Vol. SE-
7(11), pp. 590-593, November 1981.

[4] J. R. Comer, H. C. Conn, and K. A. Schember, "Software design and develop
ment: a graduate curriculum in software engineering," Proceedings of the
Sixteenth SIGCSE Technical Symposium on Computer Science Education,
Vol. 17(1), pp. 335-341, March 14-15, 1985.

[5] P. J. Denning, "What is experimental computer science?," Communications of
The ACM, Vol. 23(10), pp. 543-544, October 1980.

[6] S. W. Draper and D. A. Norman, "Software engineering for user interfaces,"
IEEE Transactions on Software Engineering, Vol. SE-11(3), pp. 252-258,
March 1985.

[7] C. M. Eastman, "Current practice in the evaluation of multikey search algo
rithms," Proceedings of the Sixth Annual International ACM SIGIR Confer
ence, pp. 197-204, Washington, DC, June 1983.

[8] C. M. Eastman, "Estimating block ~esses as an occupancy problem,"
Technical Report 87001, Department of Computer Science, University of
South Carolina, August 1986

[9] S. Even and M. Rodeh, "Economical encoding of commas between strings,"
Communications of the ACM, Vol. 21(4), pp. 315-317, April 1978.

[10] R. E. Fairley, "The role of academe in software engineering education,"
Proceedings of the 1986 Computer Science Conference, pp. 39-51, Cincin
nati, Ohio, February 4-6, 1986.

[11] R. E. Fairley, "Educational issues in software engineering," Proceedings of
the 1978 ACM National Conference, pp. 58-62, Washington, DC, December
1978.

[12] R. E. Fairley" "MSE79: second draft of a master's curriculum in software
engineering," Software Engineering Notes, Vol. 4(2), pp. 13-16, April 1979.

[13] R. E. Fairley, "MSE79: first draft of a masters curriculum in software
engineering," Software Engineering Notes, Vol. 4(1), pp. 12-17, January
1979.

321

www.manaraa.com

[14] D. Ferrari, "Considerations on the insularity of performance evaluation,"
IEEE Transactions on Software Engineering, Vol. SE-12(6), pp. 678-683,
June 1986.

[15] P. J. Fleming and J. J. Wallace, "How not to lie with statistics: the correct
way to summarize benchmark results," Communications of the ACM, Vol.
29(3). pp. 218-221, March 1986.

[16] N. E. Gibbs and A. B. Tucker, "A model curriculum for a liberal arts degree
in computer science," Communications of the ACM, Vol. 29(3), pp. 202-210,
March 1986.

[17] T. Gilb, Software Metrics, Studentlitteratur, Sweden, 1977.

[18] T. Gilb, "Response to "Stimulating software engineering progress":SEN April
1983," ACM Sigsoft Software Engineering Notes, Vol. 3(3), pp. 72-73, July
1983.

[19] R. M. Graham, "Performance analysis as a fundamental objective in software
engineering education," Software Engineering Education: Needs and Objec
tives, Anthony I. Wasserman and Peter Freeman, eds., Springer-Verlag, New
York, NY, pp. 120-122,1976.

[20] A. A. J. Hoffman, "A proposed masters degree in software engineering,"
Proceedings of the 1978 ACM National Conference, pp. 54-57, Washington,
DC, December 1978.

[21] M. Jarke, J. A. Turner, E. A. Stohr, Y. Vassiliou, N. H. White and K.
Michielsen, "A field evaluation of natural language for data retrieval," IEEE
Transactions on Software Engineering, Vol. SE-11(1), pp. 97-114, January
1985.

[22] R. W. Jensen and C. C. Tonies, Software Engineering, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1979.

[23] J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A.
Adler, "Software complexity measurement," Communications of the ACM,
Vol. 29(11), pp. 1044-1050, November 1966.

[24] A. H. Konstaam and D. E. Wood, "Software science applied to APL," IEEE
Transactions on Software Engineering, Vol. SE-11(10), pp. 994-1000,
October 1985.

[25] D. Kroenke, Database Processing, 2nd edition, Science Research Associates,
Palo Alto, California, 1983.

[26] T. S. Kuhn, The Structure of Scientific Revolutions, 2nd edition, University of
Chicago Press, Chicago, lllinois, 1970.

[27] F. Luccio, "Variations on a method for representing data items of unlimited
length," IEEE Transactions on Software Engineering, Vol. SE-ll(4), pp.
439-441, April 1985.

322

www.manaraa.com

[28] K. I. Magel, R. H. Austing, A. Berztiss, G. L. Engel, 1. W. Hamblen, A. A. J.
Hoffmann and R. Mathis, eds., "Recommendations for master's level pro
grams in computer science: a report of the ACM curriculum committee on
computer science," Communications of the ACM, Vol. 24(3), pp. 115-123,
March 1981.

[29] M. C. Mulder and J. Dalphin, "Computer science program requirements and
accreditation," Communications of the ACM, Vol. 24(4), pp. 330-335, April
1984.

[30] J. F. Nunamaker, Jr., ed" "Educational programs in information systems: a
report of the ACM curriculum committee on information systems," Commun
ications of the ACM, Vol. 24(3), pp. 124-133, March 1981.

[31] A. Ralston and M. Shaw, "Curriculum '78 -- is computer science really that
unrnathematical?," Communications of the ACM, Vol. 23(2), pp. 67-70,
February 1980.

[32] H. A. Simon, The Sciences of the Artificial, 2nd edition, The MIT Press,
Cambridge, Massachusetts, 1981.

[33] L. J. Stucki and L. J. Peter, "A software engineering graduate curriculum,"
Proceedings of the 1978 ACM National Conference, pp. 63-67, Washington,
DC, December 1978.

[34] J. F. Traub, ed" "Quo vadimus: computer science in a decade," Communica
tions of the ACM, Vol. 24(6), pp. 351-369, June 1981.

[35] A. I. Wasserman and P. Freeman, eds., Software Engineering Education:
Needs and Objectives, Springer-Verlag, New York, New York, 1976.

323

www.manaraa.com

ACCOMMODATING THE SOFTWARE ENGINEERING

EVOLUTION IN EDUCATION

William Lively and Sallie Sheppard

ABSTRACT

Teaching software engineering (SE) in our universities and colleges is crucial as a

means to help offset the software crisis. This paper describes an evolutionary approach

used at one university to address the problems of teaching software engineering. Issues

of difficulty in teaching software engineering, the evolution of software engineering

techniques and our specific evolutionary approaches to teaching software engineering

are presented. The nature of our courses, projects and laboratories in the curriculum

is examined. Suggestions are presented on enhancements to existing approaches to

software engineering education techniques, with an emphasis on guidelines for projects.

INTRODUCTION

As software engineering with its techniques, tools, and methodologies has evolved

over the years, a major question in academic environments has been how to teach

the new discipline in our universities and colleges. At Texas A&M University we are

particularly concerned with this question since the university is a land grant school

with a charge to serve the people and industry of Texas. The software industry is

big business in Texas with such companies as Texas Instruments, IBM, Exxon, Shell,

Texaco, General Dynamics, Johnson Spacecraft Center - NASA, and others located in

the state. Consequently, software engineering education in Texas is important and we

at Texas A&M University feel we have a responsibility to include appropriate coverage

in our curricula.

The authors are with the Department of Computer Science, Texas A&M Univer

sity, College Station, Texas 77843

www.manaraa.com

Our purpose in this paper is to summarize some of the approaches to software

engineering education which we have explored in the last fifteen years. Like software

engineering, our approaches in teaching the tools and techniques have evolved. We

begin by exploring some of the difficulties in teaching software engineering, some of the

milestones which have influenced and affected our evolution of teaching these subjects

and a discussion of our graduate and undergraduate curricula in software engineering.

Finally, we present the role of our Laboratory for Software Research and discuss the

effectiveness of our approaches and note remaining trouble spots. It is our hope that

this paper can serve to stimulate discussion on the teaching of software engineering and

that some of our lessons learned can benefit others involved in software engineering

education.

GOALS OF OUR SOFTWARE ENGlNEERING EDUCATION EFFORTS

The goal of our endeavors in software engineering education is to produce quality

software engineers who understand the software crisis and have acquired a knowledge

of the basics of the software development process; that is, they understand the inter

actions of people, machines, software, tools and methodology in developing software.

Specific areas of emphasis include the development of skills dealing with communica

tion, problem solving, planning, and the definition of system requirements.

We have included basic coverage of software engineering in our core curricula

at both the graduate and undergraduate levels. By taking one elective course at the

bachelor's level and one or more at the graduate level the student has an opportunity

to develop more expertise in software engineering. In these courses they acquire at least

a limited experience in working on complex systems through projects. Hopefully, we

start them on a long term activity of acquiring software development skills which will

aid them in keeping up with software engineering approaches as they evolve over the

coming years.

325

www.manaraa.com

DIFFICULTIES IN TEACHING SOFTWARE ENGINEERING

We have found several major impediments in software engineering education.

Rapidly evolving technology makes it difficult to stay abreast of current concepts in

computer science with almost daily advances in hardware greatly influencing software

approaches and technology. Added to this is the fact that many evolving technolo

gies have no basis on a theoretical or empirical level that allow them to be justified

for widespread use. On an intuitive level many techniques can be justified, but scien

tific proofs cannot be generated to support their usage. As has been noted by other

researchers [1], our inabilities to quantify improvements in productivity for evolving

techniques continues to cause a major problem with technology transfer on a broad

scale. In SE education, this causes questions such as the following to arise:

* What are the right concepts to teach?

* How can we demonstrate that they are the right concepts?

* How can we most effectively teach these techniques?

Software engineering deals with concepts relating to large projects where many

people are involved producing possibly hundred of thousands of lines of code over a

period of several years. Teaching the concepts designed to deal with such large systems

in the limited academic environment is complicated, especially since many students

(particularly at the undergraduate level) have never worked on large software systems.

Often it is difficult for them to even understand the motivation for the approaches.

When teaching the concepts within the confines of the classroom setting, it is difficult for

the students to derive a real appreciation of them. For example, students need to realize

that there are phases and activities associated with the development of software. Other

activities, such as documentation and management, occur throughout the development

life cycle and are not limited to particular phases.

326

www.manaraa.com

For many years there were no good software engineering textbooks. Appropriate

teaching materials have been difficult to develop because of the diversity of the field

and magnitude of the problems, our lack of understanding of the software development

process in general and particularly the evolving tools and techniques, and our inabil

ity to quantify the productivity of the new techniques. In recent years an increased

awareness of the need for software engineering textbooks has been brought about by

such major efforts as the DoD STARS initiative; the Ada* language, environment and

methodology activities; the formation of the Software Engineering Institute (SEI); and

our evolving understanding of software engineering. As a result, good textbooks are

now beginning to appear [2-7].

Another problem in teaching software engineering is the difficulty in obtaining

state of the art tools for use in the academic setting. Although a proliferation of tools

and techniques have been developed over the years, industry has been reluctant to make

these available to academia because of proprietary concerns. Industry may sometimes

appe~ to make the products available to academia, but our experience in obtaining

them has been laden with problems. Long delays in obtaining tools, or complete failure

to obtain them after industry has promised them have been experienced. Outright

purchase of commercially available tools usually is impossible because of the costs

involved.

MILESTONE EVENTS DRIVING THE SE EVOLUTION

In the field of software engineering we have witnessed an evolution that has di

rected our teaching of the subject. First, individual tools to assist in software devel

opment appeared such as assemblers, compilers and operating systems. Since most

applications were fairly simple in the early days, these tools sufficed. Education at

* Ada is a registered trademark of the United States Government (Ada Joint Pro

gram Office)

327

www.manaraa.com

this period concentrated on courses devoted to languages (e.g., "FORTRAN Program

ming"), or classes oflanguages ("Assembler Languages") and specific tools ("Compiler

Construction," "Database Management Systems") and types of software ("Operating

Systems"). With increasing sophistication of applications, the realization occurred that

simple collections of tools were not sufficient. This conclusion brought about the con

cept of programming environments with integrated sets of tools such as Unix, Interlisp

and Smalltalk. No longer could courses be neatly classified as languages or operat

ing systems but rather we see the emergence of courses integrating the concepts and

concentrating specifically on the software development process.

Although these environments assist in the development of programs, as we have

moved toward larger and more sophisticated systems we have seen the emergence of the

concept of the software development environment (SDE). The SDEs attempt to address

software development across the entire life cycle, not just the programming effort.

Such systems are collections of tools dealing with the various phases and activities

of development, but initially did not provide coherent methodologies for their use.

These methodologies are needed to provide an integrated system of technical methods

and management procedures covering the entire development life cycle with a uniform

interface to the various tools. Such methodologies are now evolving.

The above evolution was brought into sharper focus for our teaching efforts by

viewing DoD's efforts toward software development. DoD in the 1970's began to de

velop the concept of Ada as a means for solving many of the problems associated with

software development. The goal of developing a high order language in which to write

programs for computers embedded in larger systems was based on the realization that

software engineering principles might be more effectively applied through the use of

a high order language specifically designed for that purpose. Although software engi

neering principles are generally language independent, it may be easier to apply them

when using higher order languages, especially if the language provides the appropriate

328

www.manaraa.com

facilities. Ada supports features such as structured programming, strong data typing,

separate compilation, information hiding, data abstraction, encapsulation, separation

of specification from implementation, separation of logical and physical concerns and

readability. Additional major thrusts of Ada are portability and reusability. All of these

are important concepts to instill in prospective software engineers.

The use of a language alone is not sufficient to support software engineering.

This led DoD to the pursuit of environments to embody the concepts of software en

gineering and provide appropriate support tools. Hence, we saw the appearance of the

STONEMAN documents [8] which put forth the concepts of KAPSE, MAPSE and

APSE (kernel, minimal, and Ada programming support environments). The need for

methodologies to further integrate the language and tools with software engineering

concepts led to development of METHODMAN [9]. Tools alone are not enough; a

unifying concept of methodologies is an additional aspect needed to create a mature

environment to accomplish the end goals of enhanced quality and productivity. Thus,

the DoD evolution proceeded from a language, Ada, to environments providing tools, to

the development of methodologies to support the entire software development process.

The Ada, STONEMAN and METHODMAN activities were integrated into our

approach to teaching software engineering in the 1980's following the same evolutionary

lines. First, the language itself was introduced into our graduate course in the design of

programming languages. Next, the STONEMAN concepts were incorporated into our

graduate programming methodologies course. Finally, a special course was developed

integrating the Ada language, the environment issues and the methodological aspects.

Current trends in developing software include influences from artificial intelligence

and fifth generation systems. In particular, expert system building tools, such as ART

[10], KEE [11], Knowledge Craft [12], and others, provide powerful tools for rapid

prototyping within software development. One of the uses of rapid prototyping is in

deriving correct system specifications. Since users often do not really know what the

329

www.manaraa.com

requirements for their systems are, they cannot effectively communicate their needs

to the developers. Rapid prototyping provides a means for interaction between the

developer and user to obtain the requirements that the user really desires.

Fifth generation systems offer the hope of a new paradigm for developing software

where requirements definition is done in very high level specification languages that

are executable [13]. A means for rapid prototyping is provided and subsequently the

very high level language is automatically translated into an efficient code ready for

execution. A further advantage of this approach is that maintenance can be performed

on the specification. We are exposing our students to these concepts as we feel that

this is the direction of software development in the future. A special topics course

titled "Artificial Intelligence Approaches to Software Engineering" has been developed

to explore current research and work in this area.

Since this evolution of software engineering methodology is continuing, there is

an on-going need to consider effective teaching techniques. In the following section we

present some of the approaches which we have used.

CURRICULA DEVELOPMENT FOR TEACHING SOFTWARE

ENGINEERING

The advent of the formal teaching of concepts of software engineering at Texas

A&M University occurred in 1975. The first course taught was a one-semester graduate

course called "Programming Methodology" which emphasized techniques dealing with

the structure, validation and verification of programs. The prerequisites for this course

were knowledge of at least one block-structured language, data structures, computer

organization and operating systems.

In two or three years the course evolved into one dealing with the concepts asso

ciated with the entire life-cycle of software development including the various phases of

330

www.manaraa.com

development and activity issues such as management and documentation. The course

emphasized the use of the evolving body of technical literature on software engineering

because of the lack of appropriate textbooks and because these papers provided the

most up-to-date information. The literature provides examples of case studies illustrat

ing successes and failures as well as presenting new and innovative techniques.

An approach often used in this course is to take the class on one day field trips.

A recent trip to Austin, Texas, is typical of the activities. The class heard a presen

tation from the project manager of the newly released IBM PC RT, visited a Texas

Instruments plant, heard a presentation from representatives of the Microelectronics

and Computer Technology (MCC) and concluded the day with a presentation by the

Software Technology Center of Lockheed Missiles and Space Company. Trips like this

one are valuable in providing outside motivation for the study of software engineering

as well as giving students an idea of the environment they will be working in and the

types of jobs they might perform in these environments.

As we gained experience in teaching the Programming Methodology course we

saw the need to include student projects as part of the learning experiences. These

projects were intended to provide students with an opportunity to apply the tools,

techniques and software development methodologies which they were studying as well

as to experience working together in groups on a common piece of software. Although

the projects did meet some of our goals, it became apparent that attempting to cover

the basic SE concepts and a project in one semester meant that the project had to be

fairly small if it were to be completed by the end of the course. As a result, a second

course in software engineering was added to our curriculum in which the students work

on a sizable project using the concepts learned from the first course.

The second course in software engineering is always a projects course which at

tempts to build upon the first course. This provides the student with truly high level

331

www.manaraa.com

experience on fairly large projects. Frequently, this course suggests Master's research

projects for the students.

First Experiences in Project Courses

Our first attempt at teaching the second SE course was devoted primarily to

projects which provided learning experiences not only for the students but also for the

faculty. With the project philosophy determined, the zealous instructors were anxious

to select a project which would be both timely and stimulating. The project selected

was to design a relational database system as relational systems were very topical at

that time and this allowed the class to truly work on a state of the art software system.

So that the course could concentrate on the project, we required that the students have

as prerequisites both the Programming Methodology course and our Database Systems

course.

The class of seven people working as a group adopted a structured analysis

apprQach in the design of the relational database system using dataflow diagrams,

data dictionaries, data structure diagrams, and pseudo-code. Periodic structured walk

throughs were held to review the design. It became apparent that only the specification

and high level design could be completed during the semester. Therefore, important

issues for the class to deal with were documentation, particularly the capture of design

rationale. Unfortunately, nothing within the structured analysis technique provides for

documenting design rationale. Also, there were no automated tools to facilitate the use

of structured analysis beyond word processing capabilities.

Since the class had fallen short of completing the work on the relational database

system, a second class one year later was given the task of completing the design. This

provided an interesting test of the documentation produced by the first class. It took

the eighteen students enrolled approximately half the semester to arrive at the position

of understanding where the first class had stopped work, indicating that the flow of

332

www.manaraa.com

information from the first to the second class was not good. The students analyzed this

problem and attributed it to three factors: the quality of the first class's documentation,

the complexity of the system being worked on, and the failure to adequately capture

the design rationale. This was good experience for the class as it allowed the students

to see problems that industry deals with frequently.

The instructors learned several things from this experience. A more tractable and

less state of the art system should be attempted to allow the student more exposure

to all the phases of the software development activity. A successful, already completed

project with good historical data might serve as a good selection since pitfalls can be

more realistically anticipated and the students could compare their progress and results

with the historical project data. Some documentation scheme must be developed to be

able to trace design rationale. Although our original goal of designing a relational

database system was not met, we did not consider the project to be a failure as both

the students and faculty involved agreed that the experience had provided valuable

insight into real software engineering problems.

Comparative Projects

In another offering of the project course with 18 enrolled students, a different

approach was used. As mentioned earlier, the demonstration of quantifiable measures

of productivity with various design techniques is a major issue confronting the software

engineering community. As an attempt to experiment with different design approaches,

one class undertook the following experiment. The class was divided into three teams

with each team being instructed to use a different design approach to the given problem

and compare the results. The three design approaches studied were object oriented

design [6], SADT [14], and HOS's functional decomposition [15]. Together with the

instructor, the group developed the following criteria for comparison of the design

approaches:

333

www.manaraa.com

Ease in learning use of technique

Ease of use

Availability and quality of documentation

Facilitation of communication among developers

Ease of partitioning problem among developers

Ease of capture of design rationale

Ease of facilitating problem solution

Ease of interlacing with requirement specification and implementation techniques

Facilitation of validation and verification

Ease of expressing constraints

Ease of fitting within management schemes

Enhancement of maintainability

Availability of automated aids

Requirements traceability

Facilitation of rapid prototyping

Facilitation of design reviews

Support for production of good documentation

As the students attempted to use these, they found that measures on the above criteria

are sometimes difficult to generate. Even factors, such as ease in learning and using the

techniques, which at first appeared straightforward to the student were discovered to

be quite subjective. Other factors, such as ease of facilitating problem solution are most

subjective and evaluated less easily. Clearly, the above criteria provided a framework

334

www.manaraa.com

for evaluation and will be useful in future work environments where they may be

responsible for selection of the design approach to follow.

The project for the group was to design a graphics display tool based on Nassi

Schneiderman (N-S) charts [16]. This tool was intended to visually assist beginning

programmers in developing programs. As the groups began working on the project,

they came to appreciate the complexity of developing complete requirements. All of the

students were familiar with Nassi-Schneiderman charts and a number of class members

were concurrently teaching the use of the charts to undergraduate students. They were

surprised at the difficulty they experienced in developing requirements even where they

thought they completely understood the tool to be developed and the environment in

which it was to operate. The class also discovered that it is sometimes difficult to

differentiate between requirements definition and specification and high level design.

The groups suffered from a lack of automated tools and of sufficient documentation

on the techniques resulting in considerable clerical work for the students. Attempts to

obtain the tools from industry proved to be very frustrating.

The groups found the various techniques supported decomposition to varying de

grees. Some techniques worked better depending on the level of design: some worked

better at the higher, more abstract levels, while others worked better at the lower, more

detailed levels. One technique appeared to yield a flat design with no hierarchial struc

ture. One group experienced difficulty because the design approach did not interface

cleanly with a requirements definition technique.

One group commented that the large amount of time spent on the requirements

phase helped produce a better system - a result that many experienced designers

endorse. Another group found that, for this particular problem, dataflow diagrams were

not effective because of the need to represent control flow. Actigrams which incorporate

control [17] were used, thus facilitating design of the system.

335

www.manaraa.com

A software design problem can vary in a number of ways in regard to hardware.

The hardware may already be specified, several choices may exist for the hardware,

or the designer may be completely free to choose the hardware. Hardware selection

became an important issue in this project because of the graphics capabilities required.

The hardware's graphics toolkit could greatly ease the design and implementation of

the system.

The machines available for use on the project and the student's familiarity with

these machines was important in that learning time for a new machine detracted from

the design time. A single group using several different machines experienced increased

communication problems.

Current Trends

Ten years elapsed from the inception of a graduate course in software engineering

until the introduction of a elective senior level course in software engineering into our

curriculum. During the interim, many of the techniques, such as structured program

ming and problem analysis, were inserted into various courses throughout the under

graduate curriculum. A number of faculty resisted establishing a separate SE course

as they felt undergraduate students typically do not have the maturity to deal with

the wide spectrum of topics covered in an introductory software engineering course. In

September of 1985, when the undergraduate course in software engineering was taught

for the first time, fears about student maturity were realized to some extent. Because

most of the undergraduates had only worked with small programs developed in an aca

demic environment, they were unable to appreciate the concepts fully. In subsequent

semesters we counteracted this problem by providing the students with a better ap

preciation for the" software crisis and system concepts. We presently feel comfortable

about the students' perspectives on the development of large software systems.

336

www.manaraa.com

Besides offering undergraduates an opportunity for a specialized course in software

engineering, our new undergraduate course serves as an initial introduction to software

engineering concepts for all our students. This early start will allow our first graduate

course in software engineering to concentrate on advanced concepts, with a small project

on requirements definition and specifications. The added emphasis on requirements and

specification will be beneficial in giving more coverage to this critical problem area.

In the fall of 1986, a new graduate course in software engineering, titled "Software

Models and Metrics," was added to our curriculum. This course, being taught for

the first time in the spring of 1987, examines models of the software development

process, looks at attempts to quantify or apply metrics to methods, tools, productivity,

software complexity and software reliability. The more success we have developing good

models and good metrics, the better we can argue for the use of new techniques and

methodologies, thus enhancing technology transfer.

Guidelines for Projects

In order to enhance the benefits of projects and minimize distracting frustrations

for students, the instructor needs to do careful planning ahead of time. The selection

of the problem for the class project is very important. Depending on the information

given to the students, different aspects of. the software development process can be

emphasized. The availability of a good historical record of a successfully completed

project can provide the instructor with valuable insight in guiding the students. In

such a case, emphasis could be placed on requirements definition or specification or

design. A maintenance project extending the capabilities of the system could also be

undertaken. The problem definition, whatever its source, needs to be made available

to the students early in the semester.

Students should be provided with automated aids for tools when appropriate and

available. Appropriate preplanning and problem selection enhances the possibilities of

337

www.manaraa.com

acquiring automated tools from industry for use in the project. We feel that much of

our frustration in getting software donations or loans has been because of inadequate

lead-time in seeking industry support for the effort.

The wide disparity in background and experience of students can also cause prob

lems but can be turned to an advantage by careful team assignments by the instructor.

The most experienced students should be candidates for project leadership positions as

this will not only enhance system development but will also give experienced students

opportunities to develop leadership skills. The inStructor should attempt to balance

ability and experience among various subgroups of the project. This balance allows in

experienced students to learn from more experienced ones and gives everybody the op

portunity to work with groups of diverse abilities, experience, and background. Working

together in groups teaches the importance of communication and habits of sociability.

Dealing with management concepts of planning, scheduling and allocating re

sources is critical for the students. In our experience, many students begin to see the

need for the software engineering concepts which they have been studying when they

are personally involved in a group software development effort. Participating in design

reviews helps develop verbal skills and the team spirit in developing software. Each stu

dent should be given an opportunity to participate rather than allowing team leaders

to repeatedly select the more experienced or able students. In general, we have found

students begin to develop an appreciation of the difficulties in developing large complex

systems by working on class projects.

THE LABORATORY FOR SOFTWARE RESEARCH

The Laboratory for Software Research (LSR) has proven useful in focusing re

search attention on software related topics and has become an integral part of our

graduate program for those students with special interests in software engineering. The

LSR was established within the Computer Science Department in September 1983 with

338

www.manaraa.com

a dynamic structure intended to stimulate and foster the development of research ideas.

Any faculty or graduate student with an interest in software research is welcomed to

associate with the LSR and share in its resources, discussion groups, and seminar se

ries. The Laboratory has had a very synergistic effect in bringing together those with

common interests as well as providing a specific interface for seeking industry support

for our research program.

The primary research thrusts of the Laboratory have combined the traditional re

search areas of software engineering and programming languages, seeking to create soft

ware development environments which can improve the productivity of programmers

and enhance the maintenance of software systems. Current effort within the Laboratory

focuses on the infusion of knowledge-based approaches into software deVelopment tools

and techniques in order to produce true problem solving environments.

Academic Thrusts

In the research environment, as in the academic arena, the special characteristics

of software engineering influence what can be effectively handled. In our experience,

the attempt to develop production quality large systems with student labor is not the

most successful approach. The primary motivation for most students is not to produce

marketable products but rather to use the research exercise as a learning experience.

Hence, we have concentrated on involving students in projects which allow them to

work on the cutting edge of technology but in narrow enough domains so that they

get to experience the joy of following an idea through from its formative stages to its

evaluation for inclusion in full-scale environments. Upon graduation, these students are

experienced in software design, development, and evaluation as well as knowledgeable

in the particular area which they researched. These experiences qualify them to take

their place as productive members of the software development industry.

339

www.manaraa.com

Our approach of encouraging students to define specific aspects of software devel

opment and follow the idea through from inception to completion has several additional

benefits. Although the research still requires that they practice working together in de

termining interfaces for their systems with those of others (i.e., group behavior), the

approach does reduce the dependence of any student on the work of another one. This

regard is different from class experiences described earlier where the emphasis is on

team work. We feel, however, when it comes to the thesis or doctoral research each

student should have some control over his or her own destiny.

This approach is also seen as beneficial by industry sponsors of our research in

that students can provide "in-depth" coverage of ideas which might be deemed "high

risk" by industrial software researchers. Our "prototype" systems do not in any way

compete with their own production systems but allow identification and evaluation

of ideas which might be ready for inclusion in commercial systems by our industry

supporters.

Industry Liaison

One of the most important components of our Laboratory program is our liaison

with industry. Although we have traditionally had some industry funding within our

department, we have found that the establishment of the Laboratory as a focus for our

software research has enhanced our ability to attract sponsors for faculty and graduate

student research. At present, we have five funded projects, varying from small grants

for student stipends to larger projects involving groups of faculty and students. Within

the Computer Science Department, this funding has stimulated interest in software en

gineering allowing us to attract top students. Within Texas industry, the establishment

of the Laboratory has increased the visibility of our efforts.

Although the benefits of industry funding for graduate student research are ob

vious, we consider these as secondary to the benefits of having students interface with

340

www.manaraa.com

representatives of the software industry. No matter how carefully the ideas and prob

lems of real large-scale software development are presented in an academic setting,

nothing can substitute for students getting to see and hear the constraints and prob

lems first hand from those actually involved in the software industry. Interface with

industry serves as a primary motivator for the study of software engineering tools and

techniques demonstrated in the classroom.

Because of the industry liaison between the Laboratory and the Software Technol

ogy Center of Lockheed Missiles and Space Company, we have been able to foster active

participation of software engineers from industry in our education program. Specifically

in our course, "Artificial Intelligence Approaches to Software Engineering", we used an

AI based software development environment being developed by Lockheed as a case

study for the class. Lockheed software engineers presented the current status of the

SDE and shared with the class the problems and approaches being followed. Within

the class we did extensive reading from current technical literature on other environ

ments. Having access to an actual "real world" project and its developers gave the class

a context for these readings and class discussions. We received positive feedback from

both the students, who appreciated the realism offered by the experience, and from the

Lockheed software engineers, who found the class members to be constructive critics.

LSR Activities

When the Laboratory for Software Research was first established, we essentially

started from scratch. Initially, three faculty were involved and we simply started meet

ings to discuss various research ideas. Sometimes these meetings took the form of several

sessions on a specific topic utilizing outside speakers, video tapes, or journal articles as

focal points for our discussions. Other meetings were devoted to publicizing the research

of faculty and of graduate students nearing the end of their work. The popularity of

these completely voluntary sessions grew to the point where average attendance had

341

www.manaraa.com

reached over 25. At this point we defined three separate groups which meet at non

conflicting times so that students and faculty are able to attend as many meetings as

they would like. Each group meets weekly with monthly schedules of planned activities

circulated to all interested faculty and graduate students.

The three research groups within the Laboratory which have been meeting since

January 1986 include the software engineering and artificial intelligence group, the par

allellanguages and algorithms group, and the software tools group. Work in the first

group has concentrated on the specification aspects of automated software develop

ment environments. This group now has an external funder of some of their work. The

parallel languages and algorithms group has devoted considerable effort in surveying

and selecting hardware appropriate to support their work and are seeking approval to

purchase the equipment. The software tools group has defined and prepared several

propos&ls for tools which they plan to develop and have submitted these to poten

tial funding sources. The activities of each group are largely determined by the group

participants, each group having at least one faculty member involved.

Thus, only three and a half years from its creation, we consider the Laboratory

to be one of our successes in stimulating interest and in fostering education in software

engineering. It provides a focal point for those seeking to develop a speCiality in the

area and serves as a mechanism for our most advanced efforts in software engineering

education.

SUMMARY

Our approach in teaching software engineering has evolved as has the field of

software engineering. We feel one of the cornerstone aspects of our curriculum has

been our evolving concepts on projects. As one instructor has stated, "No project is a

failure!" Although the software results produced by some projects have been less than

desirable, the approach allows students to gain valuable knowledge and experience in

342

www.manaraa.com

the safety of the academic environment. We feel that no project is a failure if these

objectives have been achieved.

In this paper we have given guidelines and suggestions for selecting appropriate

group projects. Based on our experience, we feel that these group experiences give

students insight into problems faced in industry. Although somewhat difficult to ar

range, active participation by software engineers from industry in student projects is

particularly effective in making such experiences meaningful to students.

We feel that our approach to software engineering education helps students build

skills that will assist them in keeping up with the software engineering evolution as it

continues. Because the technology is dynamic, it is important that students learn how

to track and evaluate developments. Such activities as reading and discussing technical

papers and selecting and evaluating new software tools prepare them for productive

participation in nonacademic environments in the future.

Our success in teaching software engineering is difficult to evaluate. Although

real quantitative assessment is difficult, our observations are that students do seem to

mature and develop better insights into software systems after the completion of course

work and projects. Certainly the feedback from industry on our students has been very

positive, with reports of the ability of our students to quickly start contributing in

significant ways to major industry software efforts.

The future looks very bright for advances in software engineering education. The

SEI's development of a Master's program in software engineering will provide many

benefits for software engineering education. Specifically, the developed modules and

training for software engineering educators will have a large impact. Continued gov

ernment initiatives such as STARS will create environments for positive growth and

development in software engineering education.

343

www.manaraa.com

REFERENCES

[1] M. V. Zelkowitz, R. T. Yeh, R. G. Hamlet, J. D. Ga.1Ulon, and V. R. Basili,
"Software Engineering Practices in the US and Japan," Computer, Vol. 17, No.6,
pp. 57-66, June 1984.

[2] R. Fairley, Software Engineering Concept~,New York: McGraw-Hill, 1985.

[3] B. W. Boehm, Software Engineering Economic~, Englewood Cliffs: Prentice-Hall,
1981.

[4] 1. Sommerville, Software Engineering, 2nd Ed., Wokingham: Addison-Wesley,
1985.

[5] M. L. Shooman, Software Engineering, New York: McGraw-Hill, 1983.

[6] G. Booch, Software Engineering with Ada, Menlo Park: Benjamin/Cummings,
1987.

[7] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metric~ and
Mode13, Menlo Park: Benjamin/Cummings, 1986.

[8] J. N. Buxton and V. Stenning, "Requirements for Ada Programming Support
Environments - 'STONEMAN'," Department of Defense Report, February, 1980.

[9] A. 1. Wasserman and P. Freeman, "Ada Methodologies: Concepts and Require
ments," Department of Defense Report, November, 1982.

[10] ART Reference Manual, Inference Corporation, Los Angeles, 1985.

[11] IntelliCorp KEE Software Development System Reference Manual, 1985.

[12] Knowledge Craft Reference Manual, Carnegie Group, Inc., Pittsburgh, 1985.

[13] R. Balzer, "A 15 Year Perspective on Automatic Programming," IEEE Trans
action~ on Software Engineering, Vol. SE-11, No. 11, pp. 1257-1267, November
1985.

[14] M. Thomas, "Functional Decomposition: SADT ," Infotech State of the Art Re
port Structured Analysis and Design, 1978.

[15] M. Hamilton and S. Zeldin, "High Order Software - A Methodology for Defining
Software," IEEE Transaction~ on Software Engineering, SE-2. No.1, pp. 9-32,
March 1975.

344

www.manaraa.com

[16] 1. Nassi and B. Schneiderman, "Flowchart Techniques for Structured Program
ming," SIGPLAN Notices, Vol. 8, No.8, pp. 12-26, August 1973.

[17] P. Freeman and A. 1. Wasserman, "Comparing Software Development Methodolo
gies for Ada: A Study Plan," Softwa.re Engineering Notes, Vol. 9, No.9, pp. 22-55,
July 1984.

345

www.manaraa.com

The Evolution of Wang Institute's
Master of Software Engineering Program

Mark A. Ardis, Member, IEEE

Abstract

Master of Software Engineering (MSE) programs are relatively new. Starting such a
program is expensive in terms of human and capital resources. Some of the costs are:
preparation of new course materials, acquisition of sophisticated equipment and
software, and maintenance of a low student/faculty ratio. In addition, MSE students
and faculty have special needs, such as technical background and familiarity with
current industrial practices.

Wang Institute's MSE program has evolved rapidly in response to many of these
demands. Capital expenditures have been large, and much time and effort have been
spent creating and polishing the curriculum. Constant evaluation and refinement have
proven invaluable in assuring the success and growth of the program.

Index Terms -- computer science education, Master of Software Engineering,
professional-degree programs, programming methods, project management, software
tools.

1. Introduction

The Master of Software Engineering (MSE) Program at the Wang Institute of Graduate

Studies has evolved rapidly. This paper gives an overview of that evolution, describes

some of the problems that appear to be unique to MSE programs, and explains how

Wang Institute has responded to these problems.

www.manaraa.com

2. Institutional Evolution

2.1. Origins

Wang Institute of Graduate Studies was founded in 1979 by Dr. An Wang as an

independent, non-profit educational institution. It is accredited by the New England

Association of Schools and Colleges. The School of Information Technology was

established to fulfill a dual mission: to provide the professional graduate education that

software engineers require to meet the demands of industrial software development and

management, and to help alleviate the acute nationwide shortage of highly skilled

software specialists. The School offers one degree: Master of Software Engineering.

The original curriculum was designed by the National Academic Advisory Committee

(NAAC), a committee of academic and industrial leaders. An Institute Advisory

Committee, mostly local college presidents, was formed to provide guidance in

establishing administrative procedures. Corporate donations provided much of the

original computing equipment. The Wang family provided an endowment for the

purchase of a campus, a former Marist Brothers Juniorate Seminary. Faculty were

recruited from academia and industry.

2.2. History

In January of 1981 the first students began classes at the Institute. There were only

two full-time faculty at that time. As the Institute grew and matured, courses were

changed, but much of the original curriculum's structure remained. Considerable effort

was expended on the core courses. For each course-offering a notebook was compiled,

containing all of the lecture notes, assignments, solutions, exams, exam solutions, and

copies of assigned readings. These notebooks (still compiled each semester) provided the

raw material for the work of polishing and integrating the core courses. There have

been two comprehensive faculty reviews of the curriculum [11 [21.

The Institute has grown steadily in all dimensions. In five years we ran out of room in

the main building, and started construction of a new addition. The new space includes

more offices for students and staff, more classrooms, more lecture halls, more library

347

www.manaraa.com

stack space, and more room for computer equipment. In addition, we have cabled the

current building with a local area network. Plans for graphics workstations in each of

the faculty and student offices are progressing.

The administrative staff has grown to accommodate the growth of the rest of the

Institute. In the last two years we have hired a new President, a Director for the

Computer Center, and a Director of Special Programs. Additional staff for the

computer center and the audio/visual center have been hired as well.

The fifth class of MSE students graduated in August, 1986, bringing the total number

of alumni to 81:

Year Number of Graduates

1982 5
1983 14
1984 15
1985 17
1986 30

Total 81

The successful growth of the MSE program is due to extensive planning and evaluation.

Considerable effort was spent in preparing the original plans for conception of the

Institute, in preparing the first five-year plan, and in preparing the first computer

center plan. The NAAC meets three times each year to evaluate the progr,am. The

faculty and student body reviews the curriculum continually. Students and alumni

have been surveyed several times to determine the success of the program, both

pedagogically and practically [3].

3. Current Status

3.1. Curriculum

Students in the MSE program take six required core courses, three electives and two

348

www.manaraa.com

project courses. The core courses are:

• Formal Methods: Verification, abstraction, specification, formal language
theory and analysis of algorithms.

• Programming Methods: Design, coding and testing of modules.

• Software Engineering Methods: Requirements analysis, specification, and
system design.

• Computing Systems: Either of two courses:

o Operating Systems: Synchronization, memory management, process
management.

o Computing Architecture:
addressing, networking.

Interrupt and I/0 structure, operand

• Management Concepts:
philosophies and methods.

Survey of business structures, functions,

• Software Project Management: Software project planning, monitoring and
leadership.

Appendix I contains a more detailed description of each of these courses. The

prerequisite structure is shown in Figure 1.

Elective courses cover a wide spectrum of computer science and management topics,

including: compiler construction, database management systems, decision support

systems, expert system technology, principles of computer networks, programming

environments, requirements analysis, software marketing, technical communication,

transaction processing systems, user interface design, and validation and verification.

Project courses are designed to allow students to practice skills learned in the core

courses. Students work in teams of three to seven on problems of requirements analysis,

functional specification, design, implementation, validation and verification,

maintenance, or some combination of these. Both the products and the processes of

these projects are expected to meet academic and industrial standards. For example,

349

www.manaraa.com

specifications are often written in a formal notation (rather than English prose), and

technical reviews are used to ensure adequate progress and product quality.

3.2. Resources

The Institute has a variety of computing equipment for instructional purposes, including

a Wang VS 100, a VAXl 785, a VAX 750, and several types of personal computers. We

have plans for adding several workstations and more mainframe capability.

As would be expected, the Institute has an extensive collection of software tools. In

addition to the language processors and utility programs provided with the available

operating systems, there are special tools for project planning, requirements analysis and

specification, design, coding, testing and configuration management. Appendix II

contains a partial list of available tools.

The Institute is particularly rich in human resources. The student/faculty ratio is

about 6/1. Audio-visual technicians assist in taping course presentations and software

tools workshops. (Most Institute presentations, from faculty colloquia to project

reviews, are routinely videotaped and kept in the Institute's audio-visual library.)

Secretarial staff routinely assist project courses in clerical duties, such as recording and

distributing minutes of meetings, document preparation and program librarian

activities. Two full-time software engineers (currently MSE graduates) are employed by

the faculty to assist in tool search, evaluation, acquisition, installation and training.

Another MSE graduate is employed as a project leader and software developer on a

database project.

The library of the Institute has a collection of over 4500 books, conference proceedings,

technical reports and audio-visual instruction aids. The topical focus of the library is

on software engineering, computer science, business management and mathematics. In

addition, the library subscribes to over 300 journals covering all aspects of computer

IVAX is a trademark of Digital Equipment Corporation

350

www.manaraa.com

science and technology.

Student tuition, though competitive with other graduate schools, covers only a small

fraction of the operating expenses of the Institute. The Wang family has generously

endowed the Institute since the very beginning. They are the donors for most of the

operating expenses and new capital expenditures.

3.3. Students

The admissions criteria for the MSE program are designed to ensure adequate

preparation for technical material and proper motivation for methodological material.

Applicants must have knowledge of discrete mathematics, data structures, high-level

languages and assembly language. In addition, they must have at least one year of

software development experience.

The average student is about 29 years old and has five years of software development

experience. Most students live in the greater Boston area, but some relocate from other

parts of the U.S. or from other countries. (The Institute has had international students

from Australia, Brazil, Canada, China, Colombia, India, Switzerland and Taiwan.)

Each year the Institute admits about 30 new students, about half of whom complete the

program in one year as full-time students. The rest of the students take from two to

five years to complete the program. Full-time students may be graduate assistants

(supported by the Institute in return for assistance in teaching or research), or

corporately-sponsored. Of the class that entered in September 1986, about half are

corporately-sponsored. Sponsors this year include AT&T Bell Laboratories, Australian

Social Security Agency, Canadian Department of Defense, Digital Equipment

Corporation, Hewlett-Packard and the U.S. Army.

351

www.manaraa.com

3.4. Faculty

There are ten full-time faculty in the School of Information Technology. Three adjunct

faculty each teach one course per year. This academic year we have one visiting faculty

member. There are also positions for visiting scholars, who are not required to teach

courses, but contribute their expertise to courses and projects as appropriate.

All of the faculty teach core courses, though no faculty member has taught all of the

core courses. Faculty also supervise project courses and teach electives in their areas of

interest. Some of the faculty have contracts that allow one day of consulting per week.

4. Problems Unique to MSE Programs

Of course, many of the problems encountered by MSE programs are similar to those

encountered by departments of computer science and management science. Some

problems are unique to MSE programs, however. In this section I wi\l describe how

these special problems were addressed at Wang Institute.

4.1. Student Problems

As mentioned earlier, the average MSE student is older than the average graduate

student. Very few undergraduates have sufficient work experience to be admitted

immediately after completion of their bachelor's degrees. Most students have

established careers in software development. Attending school means disrupting their

professional and personal lives. The principal reason that Wang Institute's MSE

program is one-year long is to minimize the disruption of the students' careers.

Inadequate technical background is a frequent problem. Often, applicants failed to take

appropriate courses in discrete mathematics or data structures as undergraduates. We

have tried to address this problem in two ways: by conducting oral admissions exams

to determine technical competency, and by offering remedial courses and directed

studies in discrete math and data structures. A student with a technical deficiency may

be conditionally admitted, and must demonstrate successful completion of coursework

before matriculation. Some students appreciate the opportunity to brush up on study

skills in remedial courses before starting an intense program. Others would rather focus

352

www.manaraa.com

on specific topics through directed studies.

Part-time students often face conflicting demands from work and school. We insist that

applicants discuss work-release time with their supervisors before starting the program.

All classes are held weekday afternoons, and most courses require an average of twelve

hours homework per week. It is essential that students recognize their commitment to

school, and that their employers recognize it also.

4.2. Faculty Problems

Unlike other academic disciplines, it is not enough that faculty members in a MSE

program be excellent scholars and teachers, they must have significant industrial

experience as well. Wang Institute has tried very hard to recruit faculty with industrial

experience, and to keep them up-to-date on industrial methods. Some faculty have

recently come from industry. Their experience is usually more managerially-oriented

than the average student's experience. Some faculty paid their dues to the industry

before attending graduate school. Their industrial experience is similar to the students',

though not as recent. Constant attention to software tools, and their developers,

provides some awareness of current industrial practice. Consulting is another way to

stay in touch with industry. The Corporate Associates Program provides contact

between faculty and local industry through seminars, on-site lectures, and joint research

projects.

Most educational institutions reward scholarly research (e.g., writing papers) more than

experimental research (e.g., building tools). But, it is hard to be an effective teacher of

software engineering methods without practicing those methods. Also, the development

of appropriate pedagogical material (e.g., course outlines, lecture notes, and homework

assignments) is particularly time-consuming in a new area such as software engineering.

Faculty at Wang Institute are actively encouraged to devote time to teaching and

experimental research. Instead of tenure, we have three and five-year contracts. The

resulting model is more like a research laboratory than an academic department, but

with an emphasis on excellence in teaching.

353

www.manaraa.com

4.3. Environmental Problems

A tool-rich environment is essential tp a MSE program in order to demonstrate and

practice methods effectively. For example, the Institute has several programming

environments. Students are able to compare features and examine the interaction of

computing capabilities and software development methods. Unfortunately, the need for

many tools produces two problems---acquisition and use of the tools.

The Wang Institute Software Environment project [4] was started very early in the

history of the Institute to solve these problems. Tool searches and evaluations are

performed by technical staff (graduates of the MSE program) at the request of faculty

and students. Once appropriate tools are found, they are installed and tested under the

direction of the technical staff. Novice users often require additional documentation to

that provided by vendors. The technical staff write or supervise the writing of these

tutorials.

Entering students are certainly computer literate, but often are ignorant of the specific

tools used at the Institute. On average, each course requires that a student learn four

new tools. The Institute conducts a series of workshops to demonstrate the use of tools.

Additional demonstrations are given during classes. Most demonstrations are

videotaped for later review. In addition, expert users are identified for each tool (often

the technical staff, but occasionally faculty or students) to handle student and faculty

questions.

The use of tools in the curriculum is integrated with the sequence of courses. For

example, many project courses use the Unix2 tools that are taught in Programming

Methods and Software Engineering Methods. There is a standard model for project

courses [5] [6], that includes a suggested directory structure and templates for

documents, specifications, designs, and code. The standard model shortens the learning

curve for new students and makes possible the integration of products from different

projects. For example, there are projects at the Institute to develop components of

2Unix is a trademark of AT&T Bell Laboratories

354

www.manaraa.com

large systems (e.g., compilers, database systems, project management environments),

and projects to integrate those components.

4.4. Pedagogical Problems

Software engineering is more than a collection of topics from computer science and

business management. It requires knowledge of a wide spectrum of industrial

experience, the application of appropriate methods, and the communication of results to

management and other professionals. Reading, homework, lectures and discussion

sessions are not adequate to impart all of these skills.

To impart knowledge of industrial experience it is important to have diverse sources of

that experience. Wang Institute is fortunate to have a very diverse student body. The

twenty corporately-affiliated (Le., part-time, or full-time but corporately-sponsored)

students who entered in September 1986 came from fourteen different institutions,

including computer manufacturers, software consulting firms, research laboratories and

government agencies. This diversity provides a variety of perspectives on software

problems. The faculty, also, have a diversity of experiences and interests. The NAAC

provides another source of wisdom. Finally, students participate in off-site visits to

local industries and government agencies as part of their study of requirements analysis

problems.

Application of methods is a theme of several courses at the Institute. For example, the

"Formal Methods" course introduces students to several testing and specification

methods, though with inadequate time to practice the methods thoroughly.

"Programming Methods" continues the examination of testing methods in the context

of programming problems. "Software Engineering Methods" explores the use of

specification methods in requirements analysis and design problems. By the time

students enroll in project courses, they have sufficient experience with methods for each

phase of software development to practice them successfully.

Communication and teamwork are essential to software engineering. They are practiced

extensively III our curriculum. Project courses usually have two or three formal

355

www.manaraa.com

technical reviews, including outside reviewers. Some faculty play the role of corporate

management, and require board-meeting-style presentations. Project presentations and

demonstrations are necessary final components of projects. In addition to the project

courses, students typically have two or three project experiences within other courses.

It is clear that the size of classes is a critical factor in making many of these experiences

possible. Project teams must be small enough to allow reasonable progress during a

semester. Elective course enrollments must be small enough to allow students to share

their diverse backgrounds. Even the required core courses must have small enrollments

to allow discussion of controversial methods. Instructors must have sufficient time to

give to each student to provide accurate evaluation of performance. Finally, an

atmosphere of teamwork and cooperation is essential.

5. Summary

The MSE program at Wang Institute has encountered traditional start-up problems, but

it has also encountered some problems unique to software engineering programs.

Students in MSE programs are typically older and have more heterogeneous

backgrounds than graduate students in computer science. Faculty need to stay in touch

with current industrial practices. Software engineering education requires a tool-rich

environment. Students need to practice methods, especially in small groups.

Wang Institute has responded to these problems by adaptation (e.g., special treatment

of students and faculty) and expenditure of resources (financial and human). Growth

has been rapid. Careful planning and constant evaluation have been essential

ingredients in our success.

356

www.manaraa.com

I. Core Course Descriptions

Computer Architecture:

Formal Methods:

The course introduces the underlying principles involved with
computer design and the fundamental purposes of the architectural
features present in computer systems. The purpose is to provide an
understanding of computer systems starting from electronic circuits.
Continuing emphasis is placed on cost effectiveness as the decisive
factor governing the level at which various functions are supported.
Topics studied include interrupt and I/O structure, operand
addressing, bus architecture, pipelines, memory hierarchy,
multiprocessors, and networks of computers.

This course provides a formal foundation for the theory and practice
of software engineering. The principal theme of the course is the
production of correct, reliable and efficient systems. Underlying this
theme is the study of tools for expressing and using abstractions.
Formal techniques for specifying abstractions and for defining
hierarchies of abstractions, including both operational and definitional
specification languages, are presented. Verification techniques for
showing that an implementation is consistent with a specification are
discussed. State transition and applicative models of computation,
regular expressions, and context-free languages are discussed.
Fundamental techniques for the analysis of space and time complexity
of algorithms are presented. Application of the above to
programming languages and to problem-solving are explored.

Management Concepts:
This course provides formal foundations in the management principles
that are central to the study and practice of software engineering. It
clarifies the role of management studies within the multidisciplinary
software engineering field, and provides a conceptual base with which
a student can identify, understand, articulate, and synthesize
management related issues in software engineering. It also provides
skills, contingency frameworks, and strategies for effectively dealing
with management dominant issues during the practice of software
engineering. Tools and techniques that can support a software
engineer manager are identified and studied throughout the course.

357

www.manaraa.com

Operating Systems:
The course covers the standard operating system topics of process
management, process communication, processor scheduling, memory
management, file management, segment management, and protection.
It also covers the following topics in computer architecture: interrupt
structures, hardware memory organization, I/O device and channel
architectures, capability based architectures, and reduced instruction
set computers. Many example systems are treated both in the
lectures and readings.

Programming Methods:
This course covers principles and techniques of programming used by
individuals, but within a team context. The quality of programs is
discussed in terms of readability, maintainability, correctness and
efficiency. Programming principles are illustrated using tools such as
profilers, revision control, and static analyzers. Verification and
validation are approached via formal reviews, testing and proof
technology. Some design methods are introduced to provide a basis
for further study in the Software Engineering course and for use in
class projects. Appropriate documentation is discussed in conjunction
with each topic.

Software Engineering Methods:
The emphasis of the course is on methods for requirements analysis,
and specification and architectural design of systems of sufficient size
and complexity to require the effort of several people for many
months. Fundamental analysis and design concepts are introduced.
Analysis and design methods are presented and compared, with
examples of their use and discussion of the types of systems for which
they are best suited. Two methods, Structured Analysis and
Structured Design, are taught at a greater level of detail to allow
students to undertake a group project addressing a relatively complex
analysis and design problem using these methods.

Software Project Management:
This course introduces the student to many of the concepts,
techniques, and tools for planning, staffing, controlling, and
monitoring a project from initial inception to completion. The course
is intended to provide the student with tools, techniques and
interpersonal skills necessary to manage a project of 10-20 staff
members. Case studies and a term project (development of a project
plan) are used to give the student the opportunity to utilize some of
the techniques and tools discussed in class.

358

www.manaraa.com

n. Partial List of Software Tools

Name

AI Tutorials
AIDES
Aide-de-Camp
APToois
Arcturus
ASLAN
C++
C-Scope
Chart
CLU
CMS
Cocomo1

Source

Smart Systems
Hughes Aircraft
Soft. Main.&Dev.
Mitchell Mgmt. Sys.
UC Irvine
UC Santa Barbara
Bell Laboratories
AT&T Bell Laboratories
Microsoft
MIT
DEC
Level 5 Research

Purpose

Expert Systems
Software Design
Configuration Management
Application Generation
Programming Environment
Specification Language
Object-Oriented Programming
Static Analysis
Presentation Graphics
Data Abstraction Language
Configuration Management
Software Cost Estimation

Concurrent Euclid Univ. of Toronto Concurrent Programming Language
Cope Cornell Programming Environment
Cornerstone InfoCom Database System
Costar Softstar Systems Software Cost Estimation
CProlog Edinburgh University Logic Programming Language
CPS Cornell Programming Environment
CSOS Harvard & Wang Inst. Operating System Simulation
Demo Software Garden Rapid Prototyping Tool
Display Tom Tullis User Interface Analysis
Duck Smart Systems Logic Programming Language
Excelerator Index Technology Requirements Analysis
ExperLisp Experintelligence Lisp Environment
Expert Choice Decision Support Software Decision Support System
ExperTeach Intelliware Expert Systems Instruction
Filevision Software Products Visual Database
FirsTime Spruce Technology Syntax-Directed Editor
Flavors Univ. Maryland Object-Oriented Programming
Fred Univ. Illinois Syntax-Directed Editor
Gandalf Carnegie-Mellon Programming Environment Generator
GEM Digital Research User Interface Tools
Gla Univ. of Arizona Lexical Analyzer Generator
Guide OWL Inter. Hypertext Document Preparation
INGRES Relational Technology Relational Database
Kermit Columbia Univ. File Transfer
Lightspeed C Think Technology Programming Environment
Lightspeed Pascal Think Technology Programming Environment
Lotus 1-2-3 Lotus Spread Sheet
MacDraw Apple Document Preparation

359

www.manaraa.com

MacExpress
Macintosh Pascal
MacProject
Methods
MicroGANTT
MicroPert
MicroProlog
Microsoft Project
Microsoft Windows
Microsoft Word
MProlog
Multiplan
Neon
Objective-C
OPS83
PAWS
Plantrac
POE
PSL/PSA
Rapid/USE
RCS
Ready
Rulemaster
Safe-C
SchemaCode
Scribe
Simpascal
Small talk
SREM
SUMACC
Superproject
SUPPORT
Swsh
Synth. Gen.
TeX
ThinkTank
Thor
TK!Solver
TML Pascal
Total Proj. Mgr.
TurboFlow
TurboPascal
TurboProlog
UNISEX

ALSoft Application Generator
Think Technology Programming Environment
Apple Project Management
Digitalk Object-Oriented Programming
Earth Data Project Management
Sheppard Software Project Management
Logic Programming Assoc. Logic Programming Language
Microsoft Project Management
Microsoft Window Environment
Microsoft Document Preparation
Logicware Logic Programming Language
Microsoft Spreadsheet
Kriya Systems Object-Oriented Programming
Productivity Products Object-Oriented Programming
Carnegie-Mellon Expert Systems
Information Research Performance Analysis
Computerline Project Management
Cornell Syntax-Directed Editor
ISDOS Specification/Design
UC San Francisco Interface Prototyping
Purdue Configuration Control
Living Videotext Document Preparation
Radian Corp. Expert System Shell
Catalytix Static Analysis
Montreal Poly. Template Editor
Unilogic Document Preparation
Wang Inst. Concurrent Programming Language
Apple Object-Oriented Programming
TRW Specification/Design
Stanford Univ. Unix/Macintosh Cross Development
Computer Associates Project Management
Univ. Maryland Programming Environment
Univ. of Maryland Window Environment
Cornell Programming Environment Generator
AMA Document Preparation
Living Videotext Thought Processing
F astw are Thought Organizer
Software Arts Equation Solution
TML Systems Pascal Environment
Harvard Software Project Management
Scandura Intel!. Sys. Syntax-directed Editor
Borland Pascal Environment
Borland
UC Santa Barbara

360

Logic Programming Language
Symbolic Execution

www.manaraa.com

UNIXISTAT
USE.IT
VIP
Visicalc
VisiProg
Visischedule
Wi como

Wang Institute
Higher Order Software
Mainstay
Visicorp
Univ. Maryland
Visicorp
Wang Institute

Statistical Analysis
Software Design
Visual Programming System
Spreadsheet
Programming Environment
Project Management
Software Cost Estimation

References

1. R. Fairley (ed.), M. Ardis, J. Bouhana, S. Gerhart, N. Martin, W. McKeeman,
"Core Course Documentation, Master's Degree Program in Software
Engineering", Tech. report TR-85-17, Wang Institute, September 1985.

2. W. McKeeman(ed.), M. Ardis, P. Bernstein, B. Claybrook, R. Fairley,
J. Goodenough, D. Lomet, S. Raghavan, G. Perlman, F. Velasco, D. Weiss, "Core
Courses, Master of Software Engineering, Wang Institute", Tech. report
TR-86-11, Wang Institute, September 1986.

3. W. McKeeman, "Summary and Analysis, Student Retrospective, Master of
Software Engineering, Wang Institute", Wang Institute Software Engineering
Review,Vol. 1No. 2 1986.

4. N. Martin, D. Ligett, J. Kirby, "The Wang Institute Software Environment",
Tech. report TR-85-05, Wang Institute, April 1985.

5. T. Gill, "A Simple Environment for Project Development Under Unix", Tech.
report TR-85-22, Wang Institute, December 1985.

6. W. McKeeman, "Experience with a Software Engineering Project Course",
Software Engineering Education: The Educational Needs of the Software
Community, Springer-Verlag, 1986.

361

www.manaraa.com

t Discrete I ria t!"{

'\
... Data ... >',

5truct(.ire·s
. .. . J

/ \ ... /1
// ~ / \

/ ~ /
/ /

.'

iAs~errlblYI
tan~tiagf>

/// //
,-----.~/_.~ !~, -------~------~I
l' Soft. Eng. I ~ Elective Project 14141-----1

I

• Project
Mgmt ~1ethods i ! I I I

L-._. I L.-----J

~~j~~I~~li
II I Iii I II---.J I

Legend: Vertical arrows denote prerequisites.

Horizontal arrows denote co-requisites

I: <j denotes prerequisite to the prograrr

l1g. 1. Course Prerequisite Structure

362

.()~Y{?~I
WorkExp:!

www.manaraa.com

Teaching A Software Design Methodology

David M. Weiss l

Wang Institute of Graduate Studies

Abstract

This paper describes an approach to teaching a software design methodology used at The Wang

Institute of Graduate Studies. The approach is general enough to be used with any of the currently

popular design methodologies. Students are first taught the principles underlying the methodology, and

the standards used with it. This phase is done in a series of lectures. In the second phase, students are

presented with a real design problem, and asked to solve it using the methodology. They are monitored

in this process by an expert in the methodology whose job is to assure that the students adhere to the

methodology, but who makes no design decisions.

The first phase has been used several times at The Wang Institute both as part of a.core course in the

regular MSE curriculum and as a one-week summer institute course. The second phase has been

implemented once as a project course.

Keywords: Software Engineering Education
Software Design
Teaching Software Design

1. Introduction

This paper describe~ one of the approaches to teaching a software design methodology used at The

Wang Institute of Graduate Studies. The approach is general enough to be used with any of the currently

popular design methodologies, such as NRL [Clements and Parnas 86), Jackson System Design [Jackson

83], Structured Design [Yourdon and Constantine 79], or Data Abstraction [Liskov and Guttag 86]. The

purpose of this paper is to provide sufficient detail for the reader to be able to use the approach and to

1 Author's current addre .. : Office or Technology Asse .. ment, Congre .. or the United States, Washington, DC 205lD-8025

www.manaraa.com

know what results to expect.

The approach has two phases: first the students are given an introduction to the principles underlying

the methodology and the application of those principles to small well-defined problems. Second, the

students are presented with a real design problem, and allowed to solve it on their own, in a simulated

working environment, receiving guidance only on methodological issues. The first phase is presented as a

series of lectures. The second is supervised by an expert in the methodology.

A1s a result of the first phase, students gain an understanding of the principles underlying the

methodology, see a model application of those principles, and have practice in applying the methodology

in academic exercises. They cannot be considered to understand it, but are ready to use it with

substantial guidance from an experienced designer (substantial guidance means nearly daily interaction

between students and designer). A1s a result of the second phase, students gain enough experience with the

methodology to understand it and to be ready to try it with less guidance, interacting with an experienced

designer perhaps once a week.

The first phase has been used several times at The Wang Institute both as part of a core course in the

regular Master of Software Engineering (MSE) curriculum and as a one-week tutorial. The second phase

has been implemented once as a project course. Because the first phase uses traditional teaching methods,

its description here is brief.

2. The First Phase

The first phase of the approach was taught as part of the programming methods course in both the Fall

1985 and Winter 1986 semesters at The Wang Institute. This course was taught jointly by several

different instructors, and covered the design, coding, and verification and validation phases of the

software life cycle.

A1s part of the design phase, a series of 5 lectures presenting the principles underlying the Naval

Research Laboratory's software development methodology (hereafter known as the NRL methodology)

was given, along with homework exercises. Several final exam questions also covered the material.

Examples of the application of the methodology were drawn from NRL's Software Cost Reduction

project, the model software development project at NRL [Clements and Parnas 86J.

The lecturer was one of the developers of the methodology, and had extensive experience in applying it

and teaching it. The students were all enrolled in The Wang Institute MSE program.

364

www.manaraa.com

3. Results of the First Phase

The results of the first phase were often disappointing. Students seemed to grasp one or two major

principles. As homework, they were able to produce documentation that conformed to the syntactic

standards included in the methodology but that was usually deficient in content. There was little

evidence of ability to formulate different design alternatives and to apply the principles presented in class

to select among those alternatives.

4. The Second Phase

The second phase was taught as a Wang Institute project course in the Winter 1986 semester. The class

size was limited, consisting of 6 students, all of whom had been through the first phase (most in the

previous semester). The project followed the organizational model described in [McKeeman 86], with

some variations in the roles played and in the environment used. In particular, a quality assurance role

was added, and a directory in the environment was established to contain documents and code placed

under configuration control. As a result of completing the first phase, the students were aware of the

documentation standards integral to the methodology.

Since it was taught as a Wang Institute project class, the second phase did not use a true working

environment. The major differences were as follows.

1. The project duration was fixed at 13 weeks.

2. There was no long-term commitment by the students to the project or to a corporate entity.

3. No student had any way of asserting authority over other students.

4. The students' attention was split among the project and several other courses. The normal
work load for a Wang Institute course is about 12 hours per week. Full-time students take 4
courses per semester. Students with an assistantship work an additional 12 hours per week.
The average project work load, based on records kept by the students during the project, was
about 13 hours per week.

5. The roles of customer and high-level management were played by instructors.

6. The penalty for poor performance was a low grade rather than termination of employment or
a bad performance review.

7. Outside the project there were no corporate resources that could be made available if needed.

365

www.manaraa.com

4.1. Application Used

The application chosen was a form manager system that enabled programs to communicate with the

operator of a l-isual display terminal. The form manager was required to provide facilities for handling

large volumes of data, for varying the display format, and for interacting with the operator. The

requirements could only be satisfied by designing a family of form managers, each member of which

operated under somewhat different constraints. The following examples describe family members that

result from varying a particular constraint. A complete list is contained in [Kirby and Mayhew 86J.

1. Family members that provide means for prompting the operator and family members that
don't provide such means.

2. Family members that only display data to the operator and family members that permit the
operator to modify displayed data.

3. Family members that support block-mode terminals and family members that support only
vt-IOO compatible terminals. In each case, the family member should be able to take
advantage of the features provided with such terminals.

4.2. Preparation for the Second Phase

At the beginning of the semester, the students were given an incomplete requirements specification, in

the style of [Heninger et al. 78J, and an incomplete module guide, in the style of [Britton and Parnas 8IJ,

that described a possible design. Both documents were produced, before the start of the project, by a

student with considerable experience in the application under the direction of a faculty member expert in

the methodology. This student then participated in the project as chief architect, and the faculty member

participated as an instructor.

At the initial project meeting, students were also given the following (see Appendix I).

1. A list of roles to be played during the project, some of which were preassigned.

2. The expected sequence of major events during the project, as required by the methodology.
Included was a list of the documents required to be produced and the order of their
production.

3. A short memo describing the configuration control procedures to be used.

4. A short memo describing the responsibilities and composition of the quality control team.

In addition, each student was required to design and document at least one module of the system.

366

www.manaraa.com

4.3. Student and Instructor Responsibilities

Subject to the preceding rules, the students were responsible for organizing themselves into a team to

use the NRL methodology to complete the requirements, to design a (family of) system(s) that satisfied

the requirements, and to implement one member of the family. They had to establish a schedule for

producing the required documentation, and assign tasks to team members, including the task of

monitoring progress, revising the schedule, and organizing project meetings.

Instructors for the project were two Wang Institute faculty members. One played the role of customer

and vice-president of software. The other was technical consultant and head of quality assurance (QA).

Conformance to the methodology was enforced through configuration ,contro!. For a design document

to be accepted for baselining, and therefore releasable for use, it had to pass inspection by a configuration

control board (CCB). One board member was the head of QA, a role played by the instructor who was

the methodology expert. No design document was baselined without his approval, which was granted

solely on the basis of conformance to methodological standards. One result of this policy was that early

drafts of all design documents were sent to the head of QA for review. Such reviews were usually done

within one day and kept the instructor familiar with the state of the design and \\ith the students'

understanding of the methodology.

Other members of the COB were the customer, the chief architect, and a member of the design team.

The latter two were both students.

4.4. Decision Making

Initially, technical decisions were made by the student project team in meetings including all project

members. Different technical debates were led by different team members, depending on the issues

involved. Where there was difficulty achieving consensus, debates were settled by agreeing to abide by the

chief architect's decision. The technical consultant attended more than half of these meetings, and only

offered opinions on methodological considerations. In cases where the project seemed to be having

difficulty with particular concepts, the technical consultant issued a clarifying electronic memo. Because

they were distributed electronically, the memos provided rapid feedback and helped keep the project from

floundering. Examples of such memos can be found in Appendix n.

By the midpoint of the semester, the students were able to structure the design task into work

assignments suitable for small teams. These teams operated independently and then reported their

367

www.manaraa.com

decisions to the chief architect. The technical consultant attended many, but not all, oC the teams'

meetings.

In an eCfort to follow the Moore method of teaching mathematics [Halmos 75J, the instructors made no

conscious attempts to influence design decisions. Students were Creely provided with instruction on the

methodology \hey were using, but were rarely told whether the instructors considered the decisions that

were made to be good. On occasions when the instructors gave an evaluation oC a design decision, it was

always well after the decision had been made, sometimes not until the end oC the semester.

When students had trouble arriving at decisions and appealed Cor help, they were told to adhere to the

principles underlying the methodology and make conscious use oC those principles in making decisions.

The result was that the students nearly always made the same decision that, in the same situation, the

instructor would have made, but they oCten took considerable time to do so.

5. Results of the Second Phase

By the end oC the project, the students had produced a complete design and a complete set of design

documentation, as required by the methodology. The set included a module guide [Buser et aJ. 86J,

reflecting the modular structure oC the system as designed, and an abstract interCace ~peciCication

[RedbookWild 84]' [Clements et aJ. 84J Cor each module. Some inconsistencies in the design remained

that would have prevented an implementation from working properly. All such known inconsistencies

were noted in lists of remaining design problems that accompanied each design document. A deficiency of

the students' design documentation was that design alternatives. although often noted, were not

adequately described. One may characterize the product of the second phase as a good first-draft design.

The students did not have time to refine the design or to implement any oC it.

The result of the second phase was that the students learned the NRL methodology, despite not having

completed a product. In the judgement of the instructors they learned a new way oC thinking and of

documenting their thoughts. The basis for this judgement was observation of project design meetings,

discussions with individual students about methodological issues, and review oC all the documentation

produced.

It was disappointing, more to the students than the instructors, that they did not produce a finished

product. Failure to do so was most likely the result of the complexity of the design problem. However, a

simpler problem would not have provided sufficient stimulus to Coree them to learn the thought patterns

required by the methodology. The students' views on what they learned were summarized in legacies

written by them (a standard practice for Wang Institute project courses); excerpts from these legacies are

368

www.manaraa.com

reproduced in the next section. In general, students felt that they learned the methodology, but were

disappoint~d that they did not produce any code. One remedy for this disappointment would be to offer

a continuation project in which the students proceed through one more design iteration and then produce

and test an implementation. Such a continuation would likely require one semester.

5.1. Excerpts From Student Legacies

The following are edited excerpts taken from student legacies, and are representative of both the

positive and negative comments received. Editing consisted of removing typographical and syntactic

errors, leaying meaning unchanged. Excerpts are organized by student.

Student A

My experience with this project was both frustrating and rewarding. I came
into the project having already taken a course on the NRL method. I believed
that I already understood the method, and that this would be the case with
all who would be on the project. My expectation was that this project
would yield an opportunity to try the method on a project from design through
testing and the completion of a working software product.

I was wrong on all counts. First, I did not truly understand the method, as
I believe. may be said of all of us upon entering into the project.
This was an important lesson.

Despite all my other comments, and the state in which the project ends, I
believe the form manager project was a success. Prior to the start
of the semester, I commented to another project member with whom I
shared another project, that I hoped that learning the method and producing
a good design, was not to be compromised for the sake of developing
the product of this project. I am pleased that when those decisions were
to be made, the product came in dead last. I am also pleased with the
real progress on the design which was made .

... I learned a lot about
what an interface is, as opposed to how to implement it.

Student B

At several points he [the instructor]
p~shed us toward doing a more complete design as opposed to moving on to
coding. At project's end, this leaves one with a slight feeling of
dissatisfaction since one of our project goals was to implement a
portion of the form manager. However, I think the project was a better

369

www.manaraa.com

one as a result: there was more payoff to the students in concentrating
on the design. We do not lack opportunities to produce code;

Student C

The requirements were much too large for a 14 week project .

... The purpose of the NRL method is to design for
change. Much was learned by designing the system 50 that these changes could
be incorporated at a later date. I believe, though, that the extent of
those expected changes was much too great for the amount of time we had and
hindered our progress.

The module decomposition in the NRL methodology is perhaps it's most
significant aspect. It was very difficult to think of breaking down the
system design in terms of information hiding instead of planning which
modules will call others. This perspective on the world is the most
significant lesson I have learned from the project.

Student D

My understanding of the NRL methodology is reasonable and I think I could
design a product using it. However, I'm sure I would still make many
mistakes, but I feel I understand the basic concepts .

... My feeling is that the NRL
methodology is a good approach, but I can't prove this until I carry the
process to completion. I would have to implement and maintain the forms
manager before I would be able to judge if the upfront work was worth it.

The NRL Methodology is difficult to learn. I think the only way to learn
this is to participate in a project like we did. I could not have learned
the methodology from lectures alone, which will make it difficult for the
methodology to catch on.

It was difficult to tell how we were doing. Since none of us had done
this before, it was difficult to tell if we were accomplishing anything
and if we were on the right track.

370

www.manaraa.com

It was fun. I'd do it again.

Student E

We didn't get a chance to validate the design or to code part of
it. AI; a result, I will always harbor a bit of doubt about the
soundness of our design and the methodology itself. Validation or
coding would have been a very enlightening experience.

To sum it all up, the project was a very worthwhile experience. It
met most of my expectations and has provided me with insights that
I plan to make great use of in my future work in software.

Student F

2) The project was much to large for any of us to
attempt in one semester, and certainly considering
that we were working with a novice system architect.

Although we all patted ourselves on the back and claimed that
·with another pass the design would be ok·, I
claim that there was altogether too much mechanism, and that
the design would never perform reasonably.

6. Factors Contributing To Success

The second phase can be considered a success because it achieved its primary objective: the students

learned the NRL methodology. Success was the result or the following factors.

1. An expert in the methodology was available to ensure that the methodology was strictly
followed, and a realistic mechanism for ensuring conformance to the methodology was used.

2. A difficult design problem was selected, and the students were forbidden to oversimplify it.

3. The students were forced to make their own design decisions while following the methodology.
Neither of the instructors interfered in the decision making process.

371

www.manaraa.com

4. One student was an expert in the application, was able to answer other students' technical
questions, and was able to make technical decisions based on his knowledge of it.

5. The class size was kept small, thereby allowing the instructors to follow progress closely.

7. Recommendations

The method used for teaching the NRL methodology should work for any methodology where the

decision-making criteria can be clearly stated. The following recommendations may help others interested

in using the same approach.

1. Require as a prerequisite that the students have learned the principles underlying the
methodology to be taught. Phase 1 should be used to satisfy this prerequisite. Do not expect
them to be able to apply the principles taught in phase 1 without some guidance.

2. The phase 2 instructor(s} must have sufficient expertise to know how to solve the design
problem using the methodology and to know how to phrase advice to the students without
solving the problem for them.

3. Establish the phase 2 project organization in advance, so that students know what roles are
available for them to take. Reserve critical roles, such as head of QA and customer, for the
instructor(s}.

4. Prepare a set of phase 2 deliverables in advance, without associated milestone dates. Allow
the students to manage the phase 2 project by deciding on the dates on which deliverable:; are
due.

5. Use a difficult design problem for phase 2.

6. Keep the phase 2 class size small.

7. Don't expect the students to feel that they have successfully learned the methodology after
completing both phases. The instructor must judge success, not the students.

8. Acknowledgements

Without the support of The Wang Institute and its staff, I would not have had the opportunity to try

the ideas described in this paper. Without urging from students at The Wang Institute, most notably

from E. Hinton and J. Kirby, I would not have had the inclination to teach a project course. J. Kirby

worked especially hard to make the form manager project possible. Without critical review from other

faculty, especially M. Ardis, P. Bernstein, R. Fairley, and W. McKeeman, I would not have been able to

describe the results clearly. My c<>-instructors in the programming methods course, and R. Fairley, my

project c<>-instructor, were particularly helpful in making me comfortable teaching in The Wang Institute

environment. I thank all of them.

372

www.manaraa.com

References

[Britton and Parnas 81]
Britton, K, and Parnas, D.
A-7E Software Module Guide.
NRL Memo Report -I70e , December, 1981.

[Buser et al. 86] Buser, J., Franklin, M., Kirby, J., and Wild, J.
Form Manager Module Guide, Rev. 1.00.
Wang Institute of Graduate Studies, 1986.

[Clements and Parnas 86]
Clements, P. and Parnas, D.
A Rational Design Process: How and Why to Fake It.
IEEE Transactions on Software Engineering SE-12(2), 1986.

[Clements et al. 84]

[Halm05 75]

Clements, P., Parker, R., Parnas, D., Shore, J., and Britton, K
A Standard Organization for Specifying Abstract Interfaces.
NRL Report 8815, June, 1984.

Halmos, P. R.
The Problem of Learning To Teach.
American Mathematical Monthly 82(5), 1975.

[Heninger et al. 78]

[Jackson 83]

Heninger, K, Kallander, J., Shore, J., and Parnas, D.
Software Requirements for the A-7E Aircraft.
NRL Memo Report 3876 , November, 1978.

Jackson, M.A.
System Design.
Prentice-Hall International, Englewood Cliffs, NJ, 1983.

[Kirby and Mayhew 86]
Kirby, J. and Mayhew, S.
Form Manager Requirements, Rev. 1.00.
Wang Institute of Graduate Studies, 1986.

[Lisko\' and Guttag 86]
Liskov, B., and Guttag, J.
Abstraction and Specification in Program Design.
MIT Press, Cambridge, MA, 1986.

[McKeeman 86] McKeeman, W. M.
Experience With A Software Engineering Project Course.
Wang Institute Technical Report TR-86-01 , January, 1986.

[RedbookWild 84]
Richard Fairley, David Weiss, Jon Buser, Mike Franklin, Ed Hinton, Jim Kirby, Steve
Mayhew, Brian Sullivan and Joe Wild.
FORM MANAGER.
Wang Institute of Graduate Studies Project Report.
1984

373

www.manaraa.com

[Yourdon and Constantine 791
Yourdon, E. and Constantine, L.
Structured Design: Fundamentals 0/ a Discipline 0/ Computer Program and System

Design.
Prentice-Hall, Englewood Cliffs, NJ, 1979.

374

www.manaraa.com

Appendix I

Memos Used To Initiate The Project Class

To: Form Manager Project Distribution

Subject: Preparations for Form Manager Project

Date: 2 January 1986

In preparation for the form manager project, I have written several brief papers discussing various

pertinent topics. The papers include the following, and are attached.

A list of roles to be played, some of which are preset. For the preset roles, the players are identified

(atch 1).

The sequence of major events over the life of the project (atch 2).

A discussion of the configuration control procedures to be used (atch 3).

A discussion of the responsibilities and composition of the quality assurance team (atch 4).

An agenda for the first meeting (atch 5).

Project Roles

Customer: Fairley

Vice President for Software: Fairley

Technical Consultant: Weiss

Head of QA: Weiss

Librarian: Sullivan

375

www.manaraa.com

Chief Architect: Kirby

Designers: All student project members

Coders: All student project members

Unit Testers: All student project members

Integration Test Team:

Scheduler:

Notebook Maintainer:

Legacy Coordinator:

Project Presentation Planner:

Documentation Coordinator:

Toolsmith:

Language Expert:

Meeting Coordinator:

Sequencing of Major Events

L Choice of roles (first meeting)

2. Familil}rization of project team with requirements and module guide (week 2)

3. Establishment of schedule (week 2)

4. Review of requirements and module guide and incorporation of revisions

5. Design of abstract interfaces

6. Review and baselining of abstract interfaces

376

www.manaraa.com

7. Documentation of uses hierarchy

8. Implementation of abstract interfaces for initial subset, including production of

implementation documents

9. Review of implementations

10. l-nit testing

11. Integration testing

12. Delivery of initial subset

Configuration Control Procedures

Purpose of Configuration Control

The purpose of configuration control is to manage change in documentation and code. We call any

document or piece of code to be placed under configuration control an item. The reasons for managing

change in documents and code are as follows.

1. The users of items can rely on the items not to be changed arbitrarily and unilaterally.

2. The users of items can rely on being notified when an item is changed.

3. There is always an unrhangeable master copy of each item available to act as a reference.
Users can always check that their copies conform to the reference.

In the form manager design project, the following will be placed under configuration control (this is an

initial list and may be expanded during the course of the project).

1. The requirements specification.

2. The module guide.

3. Each module interface specification (also known as an abstract interface specification).

4. Each module implementation document.

377

www.manaraa.com

5. The test plan.

6. The user's manual.

7. The uses hierarchy specification.

Change Control Procedures

Placing an item under configuration control is called baselining it. Following is the procedure ror

baselining an item the first time (known as initial baselining). Each step assumes successrul completion or

the preceding steps.

1. The author submits the item to the head of QA ror standards review.

2. The author submits the item to the chief architect for technical review.

3. The item is technically reviewed by a review team constituted by the chief architect.

4. The item is submitted to the configuration control board (CCB). Approval is needed from the
CCB before continuing to the next step in initial baselining.

5. The CCB assigns an identifier to the item and gives a copy to the project librarian for
inclusion in the project library.

6. The project librarian notifies all potential users and the customer that the item has been
baselined.

Once an item is initially baselined, it can only be changed by approval of the CCB, with the

concurrence of the head of QA. Following is the procedure for changing an item that is already under

confIgUration control.

1. A change request is submitted to the CCB.

2. The CCB either approves or rejects the change. If rejected, the change request is returned to
the author with an explanation ror the rejection.

3. The job of implementing the change is assigned to a project member by the chier architect.

4. The change implementor submits the changed item to the CCB and the head or QA.

5. The CCB assigns an identifier to the new version or the item (based on the existing identifier).
The changed item is given to the project librarian for inclusion in the library.

6. Notification or the change is distributed to all project members who use the item and to the
customer.

The preceding describe the rormal baselining and change procedures. It is expected. however, that

inrormal reviews and discussions will supplement the rormal procedures. In, particular the chier architect

378

www.manaraa.com

should know enough about the state of the design and implementation to know when to expect that a

document will be submitted for baselining, and should be conversant with proposed changes before they

are submitted to the CCB.

Frequency of Change

For a design document such as an abstract interface specification, initial baselining must take place

prior to release of the document to the implementor{s). Changes to the document after initial baselining

occur as needed, and are generally suggested by the implementor{s). For a project to be successful, initial

baselining must take place early enough so that there is time to implement the design.

Composition of The Configuration Control Board

The configuration control board is composed of the following people. This composition may be varied

during the course of the project.

Chief Architect, Head of CCB

Customer

Head of QA

Senior Designer

RespoDSibilities of The Configuration Control Board

The CCB has the rollowing responsibilities.

1. Maintain a list of all configuration controlled items, including description, identifier, and
location. Where several versions of an item exist, the identifier should make obvious the order
in which they were baselined. The implementation of this responsibility may be delegated to
the project librarian.

2. Approve or reject, on technical and any relevant non-methodological grounds, all changes
proposed to a baselined item. (An example of relevant non-technical grounds for rejection of a
proposed change is excessive cost.)

The CCB shall operate by consensus. In cases where the CCB cannot reach consensus, the head of the

CCB shall have final authority for approval or rejection of a proposed change.

379

www.manaraa.com

Responsibilities and Composition or QA Team

The purpose ot the software quality assurance (QA) team is to ensure that all project products conform to

the standards of the methodology and the software development model being used. The QA team

examines each product tor adherence to standards and must grant approval before a product may be

baselined and released. For the form manager design project, the methodological standards adopted are

those used by the NRL methodology, as described and modelled in the NRL methodology documentation.

The initial procedural standards consist ot the procedures for configuration management. as described in

reterence 1.

The responsibilities of the QA team are summarized in the following.

1. Ensure that documents and code obey methodological standards.

2. Ensure that configuration control process is followed appropriately.

3. ~faintain project library.

In addition to the preceding, the head of QA, or his representative, will be a member of the

configuration control board.

The software quality assurance (QA) team consists of the head of quality assurance and the project

librarian. If the QA workload becomes too great, another QA team member will be added.

Agenda

1. Meeting time

2. Overview (Weiss)

a. Purpose of project

b. Application

c. Available documentation

d. Prerequisites

e. Grades

380

www.manaraa.com

3. Sequencing of major events (Weiss)

4. Controls over the process (Weiss)

5. The Application (Kirby)

6. Tools and Environment (Kirby)

7. Resources Available (Weiss)

8. Preset Roles (Weiss)

9. Selection of available roles (Project Team)

381

www.manaraa.com

Appendix IT

Memos From The Technical Consultant to The Project Team

Secrets

A secret is a design decision that is likely to change. Each secret is hidden within a module. Typical

examples of secrets are the details of communication with a device, the representation of data, or the

implementation of an algorithm. For a more detailed list, see the outline of the modularization lecture

given in programming methods last semester.

When identifying secrets, it is important not to confuse the part of a decision that must be revealed to

make the software useful with the part that must be concealed to make the software changeable. As an

example, in the form manager the decision as to whether or not the operator can modify !variable field

value!l;2 should not be hidden. The application program needs to know whether or not it is possible for

the operator to do so. This information is likely revealed to the application by the access programs that

are ayailable to it. It there is no access program (implemented) that permits the application to obtain a

!variable field value! alter it has been modified by the operator, then the application knows that it is not

possible for the operator to do so. What should be hidden is the mechanism by which the operator can

modiry the !variable field value!.

Subsets

In the NRL methodology, subsets playa dual role. First, while requirements are being identified,

possible subsets of the full system under consideration are specified in terms of differing system

capabilities. These subsets may be used to accommodate different customer sites, improved technology,

predictable changes to customer needs, and other issues that may be described in terms of differential

requirements.

Second, after abstract interfaces have been designed, the uses hierarchy is formed from the access

programs defined in the interface specifications. Subsets to be implemented are then specified in terms of

the IJl;e5 hierarchy. These subsets include those requirements subsets to be implemented during the

current development effort, and may also include other subsets that allow development in finer

increments than those specified in the requirements. (This approach is sometimes characterized as

incremental development.)

2 An int.e&ral part or the NRL methodology is the Ule or a notation that helps define and identify dirrerent items used in
requirementa and design specificatioDs, luch as input data items and syatem modes. In particular, items enclosed in exclamation
marks. such as Ivariable field!, are t.echnical terms whose meanings are defined in a dictionary in the requirements specification.

382

www.manaraa.com

Because the requirements subsets represent one set of expected changes, the nexibility they require

strongly innuences the modular structure of the system as expressed in the module guide, and the detailed

design as specified in the abstract interfaces.

Since the uses hierarchy is composed of access programs drawn from the abstract interfaces, decisions on

how to structure the abstract interfaces into access programs strongly innuence the subsets that can be

implemented.

Ar. an example, the A-7 requirements state that • A subset is required for each HUD symbol...· One

would therefore expect to see a module in the module guide whose secret is how to display symbols on the

HUD. Furthermore, one would expect to see, in the abstract interface specification for the HUD module,

access programs for display of each symbol. Implementing a subset for a particular symbol requires that

the access progralI!(s) for that symbol be implemented. Naturally, it is also necessary to implement the

processes in which the access programs are invoked to implement the subset.

Ar. a result of the innuence of requirements subsets on modularization, and of abstract interface design

on incrementally-buildable subsets, there is feedback among the stages of requirements specification,

modularization, abstract interface specification, and specification of implementable subsets. One can

rarely expect to be such a good oracle that all is predicted correctly at the start. It is important for the

subsets describable by the uses hierarchy to be consistent with those specified in the requirem~nts,

however.

During the design of the form manager, it should be expected that there will be two chances during the

design cycle to identify subsets: during requirements specification and after abstract interface

specification. In our experience at NRL, the former is much more difficult than the latter.

Modes and States

Systems can generally be described in terms of states. For software, these states are often characterized

by defining a state vector that contains all the variables of interest in the system. A particular state is

identified by selecting values for the variables in the state vector. Ar. an example, for a system that

describes positions of points, the state vector might simply be a pair (x,y). A possible state in this s~'stem

is (0,0).

A second approach to identifying states is to give a condition over the variables in the state vector to

characterize a state or set of states. Ar. an example, {(x,y)ly=x} is a set of states that might be used to

characterize certain situations. In particular, if the system is simulating the movement of a point. then

when the states of the system are confined to this set the point is moving along the line with equation

383

www.manaraa.com

y=x.

Define a mode to be a set of states. Then a mode can be characterized by a condition. Define a mode

class to be a set of modes such that each state belongs to one and only one mode of the mode class. Then

the set of states in the system is the union of the modes in a mode class.

& an example, suppose a system has three states, say a, b, c,. We define mode Ml to be {a,b}, and

mode M2 to be {c}. Let mode class P be composed of Ml and M2. Now define mode Nl to be {a}, and

mode N2 to be {b,c}. Let mode class Q be composed of Nl and N2. Then if the system is in state b, it is

simultaneously in modes Ml and N2.

The A-7 requirements have several different mode classes, with a number of different modes in each

class. The form manager system currently may be thought of as having one mode class composed of

several different modes. (Since there is only one mode class, it has no name and is not explicitly defined.)

Introducing a second mode class currently seems unnecessary. It is important to be sure that each mode

in the mode class is disjoint from each other mode, and that the modes completely cover the set of system

states.

Note that although the word state has a generally accepted definition, the word mode does not. Three

common uses are (1) as a synonym for stat~. (2) as a set of states, and (3) as a data type.

Abstract Tnes in Requirements Specifications

Abstract types are considered valuable for their usefulness in providing implementation-independent

descriptions of objects that are to be implemented in programs, i.e., they are most frequently used in the

design of programs. Abstract types may also be used in specifying requirements. Objects with structure

may be specified as if they were abstract types by defining their structure in terms of sub-objects. To be

consistent with the requirements for requirements, the sub-objects must be specified in an

implementation-independent way.

& an example, a !display screen! might be defined as consisting of a !window area!, a !menu area!, a

!prompt area!, and a !message area!'

The liberal use of this approach in the current form manager requirements should be continued. It may

be extended to include input and output data items as they become better defined.

384

www.manaraa.com

Software Engineering at Monmouth College

Harris Drucker, Monmouth College, New Jersey
Richard A. Kuntz, Monmouth College, New Jersey
G. Boyd Swartz, Monmouth, College, New Jersey

Abstract

Monmouth College instituted a Master's degree program in Software
Engineering in the fall of 1985 as a result of extensive collaboration with high
technology industries and encouragement from the state for more interaction
between academia and industry. We define software engineering as the
technological and managerial discipline concerned with systematic
development and maintenance of quality products that are developed,
validated, and implemented within a specific time frame and within an
estimated cost range. This definition is sufficiently distinct from the
objectives of computer science programs to deserve a separate curriculum.
Students entering the program are required to have one year of industrial
experience, courses or experience in high level and assembly languages,
hardware design, discrete mathematics, and probability or statistics. The
program is more quantitatively oriented than other software engineering
programs we have examined and includes two courses in architecture,
database, operating systems, languages, algorithms, two semesters in both
computer networks and software engineering and a project course. The
program emphasizes group projects and quantitative measurements and
predictions.

1. Introduction

In the Fall of 1985, Monmouth College offered its first courses in the new graduate

program in Software Engineering, and received approval from the state of New Jersey

to grant the Master's degree in June of 1986. Prior to that first offering we went

through a self-study including extensive consultation with high technology

representatives, the results of which we think should be of interest to students

www.manaraa.com

contemplating study in this type of program or colleges interested in starting such a

program. We had to answer questions such as: What is software engineering? What

qualities does the software industry look for in graduates of a software engineering

program? Are computer science graduates different from software engineers? Is

software engineering sufficiently distinct from computer science to deserve a special

program? Given that a software engineering program is needed, what plan of study

gives us the type of graduates we desire?

In the following sections, we try to answer these questions. Some of the responses are

unique to Monmouth College but others have universal applicability.

2. Background

Monmouth College is a private, comprehensive institution located on 125 acreas in

West Long Branch, New Jersey, one mile from the Atlantic Ocean and ninety miles

south of New York City. Baccalaureate and Master of Science degrees are offered in

Electronic Engineering and Computer Science, the two department who jointly sponsor

the software engineering program. These two graduate programs are offered only at

night. Monmouth County has over 200 high technology firms and ranks 17th out of

3100 counties in the nation, in the number of computer programming and data

processing firms. The two biggest employers in Monmouth County are AT&T and Ft.

Monmouth. We thus have a large base from which to attract students.

The software engineering program was developed in consultation with representatives

from our high technology committee: AT&T Bell Laboratories, AT&T Information

Systems, Bell Communications Research, Bendix, Concurrent Computers, Syntrex, and

Ft. Monmouth. These concerns saw a need for graduates unlike the graduates of

typical computer science programs-engineers who would deal with software as part of a

commercial product which must be specified, designed, developed, documented,

maintained, and upgraded. These representatives considered computer scientists being

untrained to attack the large software systems appearing in an industrial setting.

386

www.manaraa.com

This program was thus developed in response to a need expressed by local high

technology industries and government agencies with a push from the state of New

Jersey for strong industrial/academic interaction. One of the lessons we learned is that

a program such as software engineering requires a strong input from the industry since

they are the employers of our future graduates and sponsors of their present employees.

They have strong opinions on what a software engineer should be able to do.

3. What is Software Engineering

There is no unique definition of software engineering. Our high technology committee

defined software engineering as the technological and managerial discipline concerned

with systematic development and maintenance of quality products that are developed,

validated, and implemented within a specific time frame and within an estimated cost

range. The discipline combines elements of computer science, human factors and

engineering. As a result of the growing awareness of the crucial role of software in the

performance of critically important or widely used computerized systems, the concepts

and practices of this new field have been developing in industrial and academic settings.

Applications of computer communication networks are rapidly proliferating as the

number of computer users increases. This creates a need for well-trained professionals

to develop and maintain network-based applications. These professionals must be

thoroughly familiar with engineering methods, computer science fundamentals,

communications network applications, and human factors design. To develop and

implement the distributed architectures, operating systems, and database systems of the

future, software engineers must be able to integrate their knowledge of computer science

and human factors with a quantitative engineering approach to obtain an economical

product. It is the integration of software tools, human factors, and hardware

considerations directed towards a finished product that distinguishes software

engineering from computer science.

The program in software engineering is designed to meet that need. It provides a

387

www.manaraa.com

comprehensive graduate-level survey of the fundamentals of computer science and data

communications integrated into a software engineering framework. The emphasis

throughout the program is on applying the lessons learned to practical and relevant

software development projects.

4. Desired Outcomes

The software engineering program is designed to provide students with the basic skills

to: design and evaluate computer networks, database management systems, and

operating systems; conduct product evaluation; use the design techniques and tools

associated with quality assurance and evaluation techniques, system validation

techniques, project management techniques, cost estimation and control.

Many computer science departments offer a two semester sequence in software

engineering. Is that not adequate? Our response is that the environment of the other

courses in the software engineering program must be different. In all our courses, we

use team projects and emphasize the concerns of the software engineer. This is

sufficiently distinct from the typical computer science program to deserve a unique

program.

Another response to that question also lies in the characteristics of the students at

Monmouth College. The typical graduate student in the computer science department

has transferred from a non-technical undergraduate curriculum, while our software

engineering students typically have an undergraduate degree in computer science or

engineering. All of our software engineering students have spent at least a year in the

software industry and are thus aware of the problems in working in large teams on

large software projects while the typical computer science graduate student has not had

extensive industrial experience. This difference in background provides a rationale to

the software engineering student to understand the principles of software engineering.

In order to provide the increased faculty-student involvement and the team

388

www.manaraa.com

environment we feel that is so important to software engineering, this graduate program

is the only daytime graduate program at Monmouth College. The group projects we

envision cannot be done in an evening program. In addition, enrollment is constrained

to be smaller than that of the other programs, the program has special facilities, and

higher tuition is charged. Students can attend on a full-time or part-time basis.

5. Student Prerequisites

We require all students to have some industrial experience in a software environment

so that they can appreciate the value of the techniques and tools learned in the

program. We require either courses or experience in high level programming languages,

assembly language, data structures, use of some operating system, discrete math,

probability or statistics, and logic design. This is usually satisfied by an undergraduate

major in computer science of electrical engineering. However, we do have a few

students with a non-technical undergraduate degree who returned to school for the

prerequisite technical courses and are working in a systems programming environment.

All students must get recommendations from their supervisor and a former professor.

The letter from the supervisor also informs us that the supervisor is aware that the

company must release the student from his job during the day to attend classes.

Finally, an interview with the coordinator of the program is necessary.

6. The Program

The program is jointly sponsored by the departments of electronic engineering and

computer science and is taught by members of both departments and adjunct faculty.

It is administrated by a coordinator, not a department chair. The program consists of

ten required courses. When enrollment is sufficiently large, electives will be offered.

We have very quantitatively oriented courses on networks and protocols, database

systems, and operating systems. Courses in languages, architecture and algorithms are

389

www.manaraa.com

necessary to round out the education and give the students a fundamental basis

necessary for their future growth. A two-course sequence in software engineering

methodologies is followed by a project course where students integrate the fundamentals

learned in other courses with the tools of software engineering to carry out a complete

software cycle on a team-oriented design project.

We describe the courses in the Appendix, but as you read them, it is important to

realize the environment in which they are taught-namely as team-oriented projects

emphasizing an engineering discipline with quantitative measures of performance and

cost. All courses meet the equivalent of forty-five, fifty minute periods. Except for a

project course and the operating system course, all courses meet over a regular fourteen

week semester. The operating system course is spread over two semesters or may be

taken during the summer. The project course is offered summers only (Figure 1).

Full time students would take nine courses during the regular semester and the

project course during the summer. A part-time student could finish in two years and

two summers by taking two courses per semester and the operating system course and

project courses in consecutive summers.

7. Comparisons To Other Schools

We examined the programs at Wang Institute and Texas Christian University

although we know of two other schools that offer software engineering programs: Seattle

University and Dartmouth. In comparison to our curriculum, theirs is much more

management oriented. Our high-technology committee was very insistent that our

graduates be able to quantify results. The requires knowledge of advanced queueing

theory concepts, optimization algorithms, proofs of correctness, and,. in general a

facility in the manipulation of numbers, symbols, and random variables.

390

www.manaraa.com

8. Special Facilities

In addition to the facilities that are available to the Monmouth College student,

special facilities donated by AT&T are available to the software engineering students.

The primary computer is an AT&T 3B5 with 3 megabytes of main memory, two 340

megabyte disk drives and 20 hardwired terminals. In addition, all Monmouth College

faculty have access to the 3B5 through on-campus and off-campus dial-in ports. At the

present time, in addition to the usual UNIX facilities, we use INFORMIX as our

database languages. We use DB III as the database for the AT&T 6300 PC's. We are

continually adding programming tools, productivity tools, documentors, planning and

control, and costing tools.

A local area net is implemented using 3COM network and AT&T 6300 PC's. This

network is primarily used as a test bed to examine protocols designed by the students.

By setting up a network partitioned from the 3B5 we do not risk crashing the whole

system if the network fails.

To support the operating system course we have a mixture of UNIX based machines,

MacIntoshes, and MS-DOS machines. We also have a Concurrent Computer XP6D that

supports Ada.

To support simulation we use the AT&T Performance Analysis Workstation (PAWS)

running on an AT&T 3B2/4oo and Network 11.5 running in an MS-DOS environment.

9. Lecture and Seminar Series

To enhance the program and service the surrounding community, we offer a

distinguished lecture series, a sequence of single lectures by experts from industry or

academia. The series is designed to provide students with a perspective on current

problems and trends in software development. Students in the software engineering

program are expected to attend and to interact with the lecturers who are available

391

www.manaraa.com

before and after the lecture for small group and individual student interactions. The

outside community is also invited to attend. In addition to providing students in the

program with exposure to current trends and current issues in software engineering, the

distinguished lecture series provides another means to support local high technology

industries and publicize Monmouth College and the software engineering curriculum.

Four lectures were given this academic year. Dr. Alfred Aho of AT&T Bell Labs give

a talk on "Little Languages", that is, the preparation of special languages for document

preparation, information processing and software development. Dr. Derek Morris of

Stevens Technical Institute spoke on distributed processing, while Nathan Petschenik of

Bellcore spoke to some issues on clarifying expectations between software developers and

system testers. Finally, Dr. Alan Garish of AT&T Information Systems gave a

presentation on local area networks as perceived from the AT&T viewpoint.

The seminar systems was designed to give a more intense interaction between the

students and the lecturers. In this case, the seminar was open only to the Monmouth

College community. In one seminar, a software management expert was invited to

present his company's software tools for such management. In another seminar, a talk

was given on some advanced UNIX tools to control software development.

10. Conclusions

The software engineering program at Monmouth College offered two courses each

semester in the academic year 1985086, starting with 18 part-time students. Of those

initial students, eleven students dropped out of the program, an attrition rate higher

than we anticipated. Some of this the students attributed to the inability to balance

school and work. Even though the students nominally had one-half day off from work

for each course, supervisors tended to expect the same amount of effort put into their

industrial workload. In the future, we plan to sensitize the supervisors to this problem.

Another problem was the lack of a quantitative background of some students, in

particular the non-CS or non-EE students. These students had the calculus and

392

www.manaraa.com

statistics background that satisfied the prerequisites to get into the program. In

practice, their skills were very rusty or they had never developed the facility to

manipulate symbols, numbers, and random variables which was so essential to a

quantitative understanding of many of our courses.

The remaining students in the program seem very happy with the curriculum, the

rigor, and the approach that is so different from a CS curriculum. Our high technology

committee also seems happy with our progress and the fact that this program is

developing a good reputation locally.

This academic year we are offering a full range of courses. Plans are to add more

software tools to our software engineering library and to attract full-time students.

Appendix-Courses

Programming languages: analysis of the underlying structure of high-level languages,

including fourth generation languages and applications generators. Existing languages

are compared through subjective and objective measures. The principles and techniques

of software engineering are used to assess different languages and to highlight the

importance of their features. Text: Programming Languages, Design and

Implementation, Prentice-Hall, 2nd. Edition, 1984.

Network Design and Protocols I-II: Quantitative analysis and design of the physical,

data link, and network layers of the ISO-OSI model; queueing theory, routing, packet

switching, and optimization algorithms. Analysis and design of higher layers,

simulation techniques, ISDN, advanced queuing concepts in mixed data and voice

packets, internetworking, protocol design using finite state machines, and optimization

of voice band transmission facilities. Text: Computer Networks, Tanenbaum, Prentice

Hall, 1981.

Algorithm design and analysis: design and analysis of algorithms including computer

models, searching and sorting, matrix operations, graph algorithms, pattern matching,

393

www.manaraa.com

proofs, and NP-complete problems. Text: Fundamentals of Computer Algorithms,

Horowitz & Sahni, Harper & Row, 1978.

Operating system implementation: Fundamental operating system concepts,

multiprocessing, scheduling, deadlock, protection and relocation, virtual memory,

security, and file systems. Case studies of UNIX, MacIntosh, MS-DOS, and Ada.

Texts: An Introduction to Operating Systems, Deital, Addison-Wesley, 1984; Operating

Systems: An Advanced Course, Flynn, et.al., Springer-Verlag, 1979.

Computer architecture: an integrated view of the logical design of a digital computer,

including the basic hardware, firmware elements, and operating system software

functions. Categorization of computer architectures, trade-off analysis, current trends

and issues. Texts: Hardware Organization and Design, Hill & peterson, Wiley, 1978;

Computer Systems Architecture, Baer, Computer Science Press, 1980.

Software engineering I-II: A two semester sequence in the design, implementation,

debugging, testing, documentation, management, and maintenance of software. The

first semester will concentrate on one-person software projects while the second semester

will concentrate on team oriented software projects. Texts: Software Engineering:

Design. Reliability. and Management, Shooman, McGraw-Hill, 1983; Software

Engineering Economics, Boehm, Prentice-Hall, 1981.

Database Management: Theoretical and practical aspects of database management

systems and their applications -- hierarchical, network, and relational models for DBMS

design, the issues of access, integration, privacy, security, and maintenance for each

model in various types of applications. Text: An Introduction to Database Systems,

Date, Addison-Wesley, 1986.

System Project Implementation: A team project to conduct a complete software

development project from initial requirements to tested, documented final product.

394

www.manaraa.com

Monmouth College
Master of Science in Software Engineering

Prerequisite Courses

• Statistics • Discrete Math • High-Level Languages

Sum",.,.
Sus;""

• Logic Design • Assembly Language

SOFTWARE ENGINEERING CURRICULA

Program.
Languages

SE 509

Data Base
Mgmt. System
Engineering &
Applications

SE 519

Software
Engineering I

SE 516

Software
Engineering n

SE 517

Operating
System

Implementation

SE 515
pfI' Students

I+- lst Year Courses for -+ I
Part-Tune Students

Opec.
System
1mpIem.

SE 515

Frr
Students

Algorithms
Desisn &
ADaIysis

SE 512

Computer
Architecture

SE514

Network
Desisn &

Protocols I

SE 510

Network
Design &

Protocols n

SE 511

System
Project

Implementation

SE 525

I 2nd Year Courses for I
. +- Part-Tune Students -+

395

www.manaraa.com

SECTION II

PART 4

INDUSTRIALLY-ORIENTED EDUCATION AND TRAINING

The demand for software engineers has resulted in several different ap
proaches to industrially-oriented education and training programs in soft
ware engineering. Part 4 contains six papers that are concerned with this
issue. The papers cover synergism of industrial and academic education;
the Israel Aircraft Industry programs in software engineering education; a
computer science education program within AT&T Bell Labs; formal edu
cation in software engineering within IBM; and the challenge of technology
transfer.

www.manaraa.com

A SYNERGY OF INDUSTRIAL AND
ACADEMIC EDUCATION

D.J. Besemer, K.S. Decker, D.W. Politi, and J.F. Schnoor
General Electric Corporate Research and Development

Kl-5C10, P.O. Box 8, Schenectady, NY 12301

Abstract

Both industry and academia educate software engineers, but each has its respective
shortcomings. Universities emphasize theory and often ignore meaningful applications,
while industry focuses on practical methodologies, failing to sufficiently stress the un
derlying concepts. Neither of these institutions typically provides the supplementary
skills needed by a software engineer. This paper describes these and other problems
with software engineering education, and illustrates one industrial training program
that is attempting to resolve many of the problems. The training program combines
the best features of both academia and industry, resulting in a synergy that successfully
eliminates many problems inherent in existing software engineering education.

www.manaraa.com

1 Introduction

Software engineering has evolved as a response to the growing software crisis during the
last twenty years. Its failure to mitigate this crisis has directed the focus inward toward the
educational methods used to teach software engineering theories and practices. Such an
introspective view reveals glaring deficiencies and inherent problems that must be overcome
if software engineering is to become pervasive. Some of the most obvious of these are the
paucity of curricula, brevity of training, dichotomy of institutional objectives, lack of
breadth, and deficiency of technology transfer.

Some industrial training programs are evolving to address these problems. General
Electric's Software Technology Program is one of these. While it cannot solve all the
problems, this program does solve some of the most important ones. A description of
both the problems and their consequences is presented in Section 2; the structure of the
Software Technology Program is explained in Section 3; the benefits of this program are
highlighted in Section 4; and finally, unsolved problems are outlined in Section 5.

2 Software Engineering Education Problems

2.1 Paucity of Curricula

One of the greatest problems facing computer science is the absence of thorough education
in software engineering. Little or no formal training in the area is required at the bachelor's
and master's level. Those schools that offer software engineering courses usually do so too
late in the curriculum - at the junior, senior, or graduate levels 1 -leaving the student
too little time to appreciate the value of and to practice with the available methodologies.
Even worse, most computer science curricula stress individualism and competition among
peers and ignore teamwork, a crucial element in industrial software projects. This lack of
general support at the university level produces candidates who are ill-prepared to solve
the software crisis and thus places the burden of training on industry [10J.

2.2 Brevity of Training

Both university and industrial training courses tend to be short. As a result, hands-on
experience is either sacrificed entirely, or the projects on which the students work are in
significant and contrived. "Canned" problems or problems that are new, but are never
used on completion, are an inefficient use of resources. The students are not given enough
opportunity for creative problem solving and are not forced to deal with major difficulties.
Most important, because their solutions will never be used, students are discouraged from
producing maintainable code, and the perceived importance of the software engineering

IStanford University, Wang Institute, and the University of Seattle are pleasant exceptions to this rule.
Stanford University has recently announced plans to begin the software engineering education at the freshman
level and propagate it through the subsequent levels. Both Wang Institute and the University of Seattle offer
master's degrees in software engineering [7],[15]. We believe this direction will continue throughout most
major computer science universities.

400

www.manaraa.com

process is diminished. With short problems, the documentation associated with the soft
ware engineering life cycle becomes a larger percentage of the total output than in normal
practice [7]. This is disheartening to newcomers in the field.

2.3 Dichotomy of Institutional Objectives

Academia and industry attempt to educate the software engineer with methods that lie
at opposite ends of a spectrum, neither of which is sufficient alone. University courses
try to give a broad view of software engineering, but the brevity of the courses dictates
that the student will not attain a firm grasp of the problems and principles. In a one- or
two-semester course it is difficult to cover many different methodologies and to give the
student in-depth experience in one or more of them. To understand the underlying issues,
the student must encounter them through experience; while broad exposure to software
engineering is vital, alone it is insufficient.

Industry, in contrast, sacrifices broad and theoretical exposure with its two basic ed
ucational formats: training courses and apprenticeships. Training courses are intended
to provide the employee with the knowledge needed to understand the specific methods
established within the company. Because of the overhead associated with this, most com
panies want to train their employees quickly so that they can become productive as soon
as possible. In an attempt to reduce the total training time, only one methodology is
taught. Thus, the employee obtains no experience in other areas of software engineering;
practicality is stressed, but the overall educational structure is poor ("toss the theory,
you're needed on the front lines").

Apprenticeship, industry's other approach, stresses on-the-job learning. This learning
mode shares similar disadvantages with training programs, in that the individual may
need time to become productive and may receive little exposure to other methodologies.
Constrained by deadlines, the organization to which the individual is apprenticed may
sacrifice education for production. "To base one's technology on apprentice training is a
risk a technologically oriented company cannot afford to take - especially if it wants to
be the industry leader."[4)

2.4 Lack of Breadth

A prevalent problem with software engineering education in both academia and industry
is the narrow view that is taught to prospective software engineers [3]. One facet of the
problem is the limited role the student is allowed to play during the software engineering
life cycle. Most software engineering courses stress only the role of individual producer and
fail to give the student proper exposure to the other roles a software engineer must play.
These roles include team leader, review participant, technical liaison, and maintainer.

A sharp focus on a single methodology contributes another aspect to the narrow view
problem. When the software engineering life cycle is taught, it is natural to apply an
accepted methodology to a "well-behaved" application (i.e., one that easily fits within the
life cycle model). Using this application, academia teaches the generic methodologies, and
industry teaches the methodology applicable to its particular domain. Unfortunately, this

401

www.manaraa.com

practice ignores the many applications that do not fit into the cookbook life cycle and the
methodologies that have been developed to deal with them.

Limited access to a wide range of tools is a problem for all areas of engineering ed
ucation, but because of the large expense involved in acquiring and learning new tools
(e.g., editors, operating systems, debuggers, languages, and computers), the problem is
more intense in software engineering education. Most universities cannot afford to equip
their computer centers with the various types of hardware and software required to give
students exposure to a wide range of resources. Corporations educating employees in soft
ware engineering see no reason to expose students to equipment that is not used in their
environments. The result is that companies employ software engineers who are experts
with one or two environments, but who have not been exposed to the multitude of other
environments that exist.

Finally, several other skills essential to practicing software engineering are not being
sufficiently addressed. Too few educational programs stress technical writing, technical
presentation, professional involvement, and technical management skills [6). Without these
skills, a software engineer is ill-equipped to fulfill the unique demands of his profession.

2.5 Deficiency of Technology Transfer

One remaining problem in software engineering education is the absence of instruction that
will lead to the effective transfer of software engineering expertise to company components,
research centers, and other engineers. This is a longstanding problem that occurs with any
new or rapidly developing technology. Generic problems in technology transfer include
resistance to change, ignorance, and motivational restraints [12).

The problem of transferring software engineering technology applies particularly to
industry. Since a formal education in software engineering was not available to most of
the people who manage and practice software production today, there are many people
involved that do not have enough training - too many to train effectively as individuals
[8). Thus it becomes important to teach software engineers how to spread their technology
to the company components where it is needed.

Another major obstacle to technology transfer is the nature of the "self-contained
cultures" of both the researcher and the software developer, which results in two problems.
First, there is a gap between software engineering researchers and software developers.
Researchers get feedback through their own research community and are not motivated to
promote the application of their work, while developers must get the job done and do not
wish to take the risks involved in applying a new tool or methodology [9). Second, software
engineering principles are not being applied directly to research programming. Research
programmers are faced with the problem of trying to apply software engineering paradigms
to the research domain where simple life cycle models do not hold. Clearly, software
engineering technology must be transferred to the research and development environment
as well as to the production environment.

Finally, software engineers are often isolated from one another, which can inhibit trans
fer of technologies, including, but not confined to, software engineering. This isolation in

402

www.manaraa.com

the academic environment, where individual performance is stressed, and in the industrial
environment, where project-oriented management or job security concerns can isolate a
software engineer from his peers, keeps the available expertise from being fully used.

3 The Software Technology Program

The Software Technology Program (STP) was created six years ago to help address the need
for thorough software engineering training in General Electric. The three-year training
program, located at G.E.'s Research and Development Center, is designed to provide
this instruction, through courses and experience, to college graduates in computer science
or computer engineering. The program combines the unique environment of a diverse
research center with a strong technical university (Rensselaer Polytechnic Institute) to
take advantage of the best characteristics of each. Program members gain more from this
arrangement than they could from experiencing both institutions independently.

3.1 Initial Training in Software Engineering

The program begins with an intense nine-week course that combines lectures, discussions,
and project work, for which graduate credit is granted by Rensselaer Polytechnic Institute
(RPI). It is designed to provide each program member with a theoretical background in
software engineering, tempered with the experience and pragmatism required by industry.
The new program members are assigned to three- or four-member teams, each of which
will work on one project for the duration of the nine-week course. Table 1 shows a sample
of projects from past courses and the key technologies that were learned from them. As the

Project

Electronic mail interface
Electronic bulletin board
Factory simulation module
Graphics frame editor
Robot language translator
Ethernet monitor
Feature Extraction and Analysis Tool

Key Technology

Ftapid prototyping
Networking
Simulation techniques
Object oriented programming
Compiler construction
Real-time programming
Numerical analysis

Table 1: Nine-week course projects

teams work on their projects, they also attend lectures on software engineering techniques
that coincide with the current development stages of their projects.

In conjunction with the software engineering course, new members are required to
take a business presentation course in which each trainee gives eight oral presentations
that are critiqued by both peers and instructors. Members also get instruction through
additional forums: introductory seminars on editors, text processing systems, workstation

403

www.manaraa.com

tools, etc.; short courses on programming languages, environments, and methodologies;
and weekly seminars on the different projects that are in progress throughout the Center
(which provide exposure to the types of projects that are available during the three-year
program).

3.2 Practical Software Engineering Experience

Following the nine-week course, each program member works on three one-year projects in
a variety of areas, including graphics, networking, communications, VLSI CAD, systems
programming, factory simulation, robotics, database systems, artificial intelligence, natural
language processing, expert systems, formal language theory, image processing, and control
systems. Concurrently, members obtain a master's of science or engineering degree at RPI.

Each year, the program members are grouped into teams based on similarity of projects.
A current team is the "Expert Systems Team," comprising projects in distributed expert
systems, situation assessment, causal modeling, and reasoning with uncertainty; another
team is the "Software Engineering -Tools Team," which is composed of projects in incre
mental parsing, Ada2 PDL environments, and graphic COCOMO cost modelling. These
teams meet regularly to review documentation and to discuss issues, problems, and con
cerns relating to their projects or to the program itself. Each team is also responsible
for organizing a center-wide colloquium by bringing in experts in software engineering or
related fields.

STP members also have additional opportunities during their three years in the pro
gram. Members attend GE-wide Corporate Entry Leadership Conferences at the beginning
and end of their three year tenure, as well as a one-day interview workshop and a multi
day technical leadership workshop. Each member has the opportunity to attend technical
conferences and training courses throughout the country, and are encouraged to attend
both technical and non-technical Center-wide seminars.

3.3 Graduate-Level Education

The pursuit of a master's degree at Rensselaer Polytechnic Institute is an integral part of
the STP. The university lends support for the program, providing program members with
a common advisor and expediting the administrative overhead associated with class sign
ups. This support is also evident in the classroom, where professors allow STP members to
use Research Center facilities and equipment for projects and assignments. The program
attempts to enhance members' technical backgrounds by fostering an environment where
work for both institutions can be shared, allowing an individual to devote more time, effort,
and care to that work. Because many of the graduate level courses at RPI are taught by
Research Center staff, the program members have a better opportunity than the typical
student to work closely with their professors. The theoretical approach of the university
provides more insight into the reasons underlying the work, while the work experience
provides an in-depth feel for the application of the theory.

2Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

404

www.manaraa.com

During the second year of the program, each member begins work on a master's thesis.
This is done in conjunction with a year-long project at the Center, allowing the trainee
to devote more time and effort (and use better resources) than the typical RPI graduate
student. Because of cooperation between GE and RPI, each program member usually has
both an RPI thesis advisor and a sponsor within GE. The latter is normally a scientist
involved with the project at the Center who can devote the needed time and effort to the
student's needs, questions, and problems. These thesis projects provide the opportunity
to try a new and more theoretical approach to the year-long projects. For example, one
program member applied concepts learned in his course on fuzzy set theory to his project
(the automatic interpretation of data from steam turbine monitors), and developed a
unique rule-based approach to the problem. Another member applied a new artificial
intelligence approach to his project (the integration of existing computer aided engineering
programs), and produced a program that automates the preliminary design of jet aircraft
centrifugal stage compressors. The results have been well received within the company, at
the university, and in the scientific community.

3.4 Completing the Software Technology Program

As stated earlier, the primary goal of the STP is to provide well-trained software engineers
for General Electric. Because of this, many members attempt to choose third-year projects
that are highly visible to other GE components. This provides exposure to other company
components and facilitates a possible transition upon graduation.

The STP member also gains exposure to other company components by attending con
ferences (e.g., the annual GE Software Engineering Conference) and panel meetings (e.g.,
the GE Software Engineering Panel, Ada Panel, and Artificial Intelligence Subcouncil),
and by keeping close contact with former STP members who are working for GE compo
nents. For instance, each year program graduates attend an STP Panel meeting at the
Research Center; this gives the graduates the opportunity to provide information to cur
rent members about the jobs that are available throughout the company. The graduates
also provide valuable feedback regarding company contacts, interview strategies, etc.

The STP manager directs graduating members' resumes to the hiring managers of the
appropriate GE components and sends the members on plant trips and interviews at these
locations. The graduating STP member is in high demand throughout the company, and
typically receives several job offers.

To give a summary of an STP member's experiences during the program; Figure 1
shows a chronological illustration of one member's activities. The internal STP training
can be seen at the top of the chart; the RPI course work is at the center of the chart;
various other activities are at the bottom of the chart.

4 Benefits of the Software Technology Program

The problems outlined in Section 2 illustrate weaknesses that exist in both industrial and
academic software engineering education programs. The Software Technology Program was

405

www.manaraa.com

-Nine-week Co rse -Business Prese tallon Course

C Course (' ~tructor) C Course (i~UUctor) -C Course (tudent)

Proj. 1: Lotta: Reasoning With I ncertalnty

Proj. 12: Distributed Expert Sys ems

Dist. Real
Fuzzy Se,. Time Systems

R&D
Mgmt. --Obj. Or.

Language.

--Theorem Non-textual
Proving Computing

I ervlew
W thop IJCAI

•
CELC

•

Advanced
Systems

Proj. 3 lmaSO Understanding

Independent
Study

Thesis: Distributed Expert
Syst m Architecture

AAAI

• •
care r Planning

W rksbop

• GE-SEC

• Jnterview • Workshop Project Leadership
Course

The abow chart Is logically divided Into three seclions. AI the lOp of the cbart are the internal STP activities
thaI occur al the Research Center. In addition to the usual aclivltles, lhis program member became an expert in the
"C" programmlnglanguaso, and was able to sbare his expertise with other members by teaching an Internal course.

At the center of the cbart are the activities that are directly associated with Renssolear Polytechnic Institute.
These are classes and the thesis associated with obtaining a master's degree.

At the bottom of the cbart are other miscellaneous activities In which this member was able to participate.
These included the Corporate Entry Leadership Conference, two interviewing workshops, a workshop on career
planning, a project leadership course, two conferences on artificialinteillsonce, and the GE Software Engineering
Conference.

Figure 1: A typical STP member's activities

406

www.manaraa.com

created in an attempt to improve software engineering training, and this section describes
how we believe the STP meets this objective.

4.1 Depth and Breadth of Program

The Software Technology Program provides the depth and breadth in software engineering
training that is lacking in other education programs. The introductory (nine-week course)
projects, three one-year projects, and projects associated with obtaining a master's de
gree give members exposure to many different types of applications, allowing them to use
various software engineering methodologies. The issue of academic book learning versus
industrial practicality is addressed by stressing cohesion between graduate courses and the
year-long projects. The underlying theories taught in courses are better understood by
applying them to specific areas outside the course context. When courses are taken that
are unrelated to a year-long project, the project can still benefit by the addition of a new
technology. For example, one program member applied the concepts taught in a "Non
Textual Computing Environments" class to a knowledge representation project at work.
The project benefited because the course-inspired graphical approach was different than
the approach that otherwise would have been used.

Exposure to methodologies and techniques that members may not be using in their own
projects is facilitated through close interaction with the other program members-both
during the nine-week course and throughout the three one-year projects. The intensity of
the course load during the nine-week course (often demanding up to 70 hours per week)
fosters a tight relationship within each new group. This close-knit relationship makes each
project group aware of what the other groups have accomplished, what problems they have
encountered, and what methodologies they have used. After the nine-week course is over,
this established infrastructure continues to be an asset to the program members. Whereas
competition inherent in most academic environments often prohibits students from getting
exposure to other students' work, this is not a problem in the STP. The cohesion of the
group fosters interaction both in the courses taken at RPI and in the year-long projects at
the Center. Consequently, members get a greater benefit from the RPI course work and
their productivity at the Research Center is increased.

Because the program is in a research environment, the program member has an oppor
tunity to work in many diverse fields. A typical range of projects for a program member
might include an interactive robot simulation package, a graphical programming environ
ment for object-oriented paradigms, and tools for natural language understanding. In this
series of projects, methodologies associated with simulation programming, object-oriented
programming, and artificial intelligence programming would all be used. The year-long
projects are of significant size to provide exposure to all phases of the software engineering
life cycle, and they are of adequate length to eliminate the major inadequacies of most
software engineering training with respect to limited duration. This variety of projects,
combined with the pursuit of a master's degree, imbues a theoretical education with the
practicality required by industry. Because of the coupling between the student's courses
and project work, there is a cross-fertilization of ideas that increases both personal pro-

407

www.manaraa.com

ductivity and the value of the education.

4.2 Multiple Roles for Program Participants

Each program member is given the opportunity to play roles other than software developer,
including team leader, review participant, and software maintainer. The first of these roles,
team leadership, is a critical component in a software project [10]. Program members gain
team leadership experience in three ways: during the nine-week course, team leadership
positions are rotated so that each individual assumes this role for a period of time; many
program members have the opportunity to be team leaders on their respective one-year
projects; and because of the STP team groupings, most third-year members are responsible
for leading their teams.

Another necessary role of the software engineer is to be an effective reviewer of col
leagues' work; reviews are often management's only method for evaluating the progress of
a project [11]. The program imparts experience, both as a software review participant and
as a review leader, through STP teams that review each document as it is developed.

Because maintenance is the longest and most expensive part of the software engineer
ing life cycle, the software engineer must learn to play the role of maintainer. Program
members are given the responsibility for answering questions and addressing problems as
sociated with all software produced by them even after they have moved to a new project.
This approach discourages software engineers from thinking that they are finished with
code upon delivery [16].

Finally, program members assume roles that improve the program itself. They interview
future program candidates, teach mini-seminars to other program members and Center
employees, manage STP-related activities, and provide feedback to the program. Allowing
the individuals to assume so many diverse roles is an opportunity that only an industrial
institution can provide, and it is responsible for broadening the employee in a way a
university cannot.

4.3 Abundant Supply of Resources

Because the STP is located at a research center, each program member is exposed to a
wide variety of hardware and software tools. Hardware resources include machines from
DEC, IBM, Sun, Symbolics, Apollo, AT&T, Hewlett Packard, Texas Instruments, Evans
& Sutherland, Apple, Xerox, and access to Cray supercomputers. In addition to the
systems software that accompanies these machines, a wide variety of applications software
is available. This list includes publishing software, object-oriented environments, graphics
packages, several varieties of programming languages, configuration management tools,
knowledge engineering tools, and many others. The Research Center participates in many
beta-tests for software vendors, ensuring that program members are exposed to the latest
developments in the software arena. The plethora of software and hardware resources,
however, does not alone insure that an employee will become adept at using them.

Because STP members have a strong technical motivation from their one-year projects
and their HPI classes, they have the desire (and the opportunity) to learn how to use many

408

www.manaraa.com

of these resources during their three year training. The result will be a software engineer
who is knowledgeable about many computing environments.

4.4 Communication and Management Skills Development

A key goal of the program is to develop well-rounded software professionals who can do
more than produce software. This involves not only exposure to new concepts, but written
and oral communication of one's ideas as well. Technical papers are the main channel
through which new developments in a field are shared, and program members are strongly
encouraged to write papers for journals and conferences. Time is allocated so that much
of this task can be done during the working day. Program members attend technical
conferences to support interaction and to establish channels of communication with other
professionals in the field.

Presentation of one's work to management or to other engineers can often mean the
difference between the continuation or elimination of a project. The business presentation
course (integrated into the nine-week software engineering course) provides instruction
and practice on how to deliver effective presentations on both technical and nontechnical
subjects. Throughout their three-year tenure, program members give many presentations
to technical staff and management concerning the status of their work, and to RPI classes
concerning the theoretical topics being studied.

Software management skills such as project formulation, resource allocation, budgeting,
evaluation, and other management issues are taught to program members through internal
company courses (e.g., the GE Project Leadership Course, which is taken by all third-year
STP members) and courses offered as part of their master's degrees (e.g., RPI's "R & D
Management" course, which is a suggested course for program members). This instruction
is important-even if the individual will not assume a management position-because it
gives a better understanding of the overall software production process. It also allows the
software engineer to understand the viewpoint of the manager, which is vital in developing
effective communication with upper-level management. The opportunity to practice such
concepts is not usually provided by a university.

4.5 Technology Transfer Support

While basic scientific research is generally transferred by paper (through articles, books, and
conferences), engineering technology is primarily transferred by people (through prolonged
personal contact, training, and teamwork). There is consistent evidence that "technology
transfer results from individual, personal interactions and technology is most effectively
transferred by transferring people with the appropriate knowledge and skills."[l] One way
this is accomplished is when program graduates take positions in company components.
They take with them three years of substantial project experience, a balance of industrial
and academic learning, and a wide variety of training in both software engineering and
other aspects of computer science. Ideally, a program member may transition to a com
ponent with one of his projects, allowing a dual transfer of technology. Graduates may

409

www.manaraa.com

also take with them useful tools developed at the Research Center or recommendations to
acquire them.

Since the nine-week course gives new members an introduction to software engineering
principles, each year-long project derives benefits from having a software engineer apply
these principles. This provides a level of expertise often lacking in a research environment.
Often a program member is the first or only group member with training in software
engineering, and possibly the only member with training in computer science. Conversely,
beneficial technology transfer can occur from the group to the software engineer. Such a
transfer of advances in computer science (e.g., the latest computer graphics algorithms)
is common, but technologies within software engineering may be transferred as well (e.g.,
object-oriented design techniques).

Particular attention is devoted to ensuring that program members have free access to
the information that is available. The matrix management structure of the program, as
well as the significant portion of time spent in program activities (reviews, classes, social
events, etc.), keeps members from being isolated in their projects. Because members are
in a training program that is independent of the mainstream promotion system and are
expected to transition at the end of their tenure, the competitive environment found in
similar circumstances is eliminated. The amount of time that members spend together and
the willingness and openness with which they help each other lead to a phenomenon we
term technology o&mo&i8: the unstructured assimilation of knowledge through prolonged
contact. A strong infrastructure exists among the group. Software utilities are freely
exchanged in a forum that was organized by the program members, and new programs
are rapidly brought into use because software developers view the program as an excellent
group with which to perform beta testing.

This leads to the second important solution to the technology transfer problem: the
creat~on of technological gatekeepers. While transferring people is the best method for a
one-shot transfer of technology, continuing transfer is better accomplished through a net
work of technological gatekeepers. These technology liaisons should straddle organizational
boundaries; speak the languages of computer scientists, engineers, and management; keep
connections with each other; have a broad range of related interests; and be near their sci
entific communities (through attending conferences, seminars, etc.) [1],[13]. The program
infrastructure, including graduates of the program, precisely meets these qualities and thus
provides a continuing source of technology transfer even (and perhaps more important)
after graduates have left the program.

5 Unsolved Problems

Admittedly, the STP does not solve all of the problems of software engineering education.
In light of the material that we have presented, there are two problem classifications: those
specific to the Software Technology Program and those inherent in software engineering
education.

We can identify three problems specific to the program. First, the Research Center
loses some of its best software engineers after their three-year tenure has ended. Although

410

www.manaraa.com

these people are replaced by newer members, the experience of the more mature members
is purged from the Research Center and transitioned to other company components. An
other problem is that the structure of such a training program would become infeasible
with a large group of participants. The overhead and complexity of managing the STP
would become far too great, and some of the infrastructure now inherent in the program
would be lost. As it is currently structured, it is doubtful that more than fifteen new
members per year could be managed effectively, a difficulty that precludes such a program
as a widespread solution to software engineering education deficiencies. Another problem
involves the relationship between the university and the program. While a coupling be
tween RPI and the program exists, the STP has not worked with the university to alter
its curricula to better suit the needs of the program. Though the STP receives important
benefits through ties with RPI, the program has not yet exerted its influence in promoting
a greater emphasis on software engineering in the RPI curricula.

Two fundamental problems of software engineering education, neither of which has a
simple solution, need attention. First, most software engineering education occurs too late
in the individual's training. It would be desirable to have a similar training experience at
the undergraduate level (possibly through multiple internships or co-op programs), while
the engineer is still forming basic skills. By beginning such training early, the software
engineering frame of mind would be an integral part of computer programming. Second,
some problems with technology transfer are not dealt with sufficiently. One crucial miss
ing component is the education and training of upper-level management in the needs for
software engineering, so that technology transfer meets with acceptance, both in the per
ception of the need (does management believe it is necessary?) and the actuality of the
methods used (do these tools solve the problem?)[2]. These problems need to be solved
before software engineering can become pervasive in everyday software production.

6 Conclusion

The Software Technology Program addresses a majority of the broad issues facing indus
trial software engineering educators today. By providing the basic education that lasts a
sufficient amount of time, incorporating realistic projects and balancing both theoretical
and practicalleaming, problems specifically inherent to software engineering education are
addressed. Allowing members to play all the roles in the process, avoiding a narrow corpo
rate view, and teaching the related communications and managerial skills, provides talents
that are often overlooked in similar curricula. Finally, by establishing avenues for technol
ogy transfer through transferring people and building a lasting infrastructure, a program
such as the Software Technology Program can become the cornerstone of a corporate-wide
strategic plan for software engineering education. These concepts can be applied not only
to software engineering education but to other areas of engineering education as well.

The STP member is able to combine the theoretical background provided by RPI and
the practical experience gained at the Research Center. Other skills, including commu
nication, management, and leadership abilities, are developed and exercised in both the
academic and the industrial environments. Because of the holistic interaction between

411

www.manaraa.com

academia and industry, the program members benefit more than they would from expe
riencing both worlds independently, and this is why the Software Technology Program
produces a synergy of industrial and academic education.

Acknowledgments

We are grateful to David E. Priest, Peter M. Meenan, George Wise, and Barbara J. Vivier
for their invaluable suggestions and corrections.

References

[1] P. A. Abetti and R. W. Stuart, "Entrepreneurship and technology transfer: key fac
tors in the inovation process," Lally Management Center Working Paper, Rensselaer
Polytechnic Institute, Troy, NY 12180, 1985.

[2] M. R. Barbacci, "The Software Engineering Institute: bridging practice and poten
tial," IEEE Software, vol. 2, no. 6, pp. 4-21, November 1985.

[3] T. Booth, et al., "Design education in computer science and engineering," IEEE
Computer, vol. 19, no. 6, pp. 20-26, June 1986.

[4] L. M. Branscomb, "IBM and U.S. universities - an evolving partnership," IEEE
TranJ. Ed., vol. E-29, no. 2, pp. 69-77, May 1986.

[5] S. N. Busenburg and W. C. Tam, "An academic program providing realistic training
in software engineering," Comm. of the ACM, vol. 22 no. 6, pp. 341-345, June 1979.

[6] R. J. Joenck and E. C. Jones, Jr., "Joint special issue on developing the ability to
communicate," IEEE TranJ. Ed., vol. E-27, no. 3, September 1984.

[7] J. P. McGill, "The software engineering shortage: a third choice," IEEE Tran". on
Soft. Eng., vol. SE-lO, no. 1, pp. 42-49, January 1984.

[8] H. D. Mills, "Software engineering education," Proc. IEEE, vol. 68, no. 9, pp. 1158-
1162, September 1980.

[9] W. Myers, "MCC: Planning the software revolution," IEEE Software, vol. 2, no. 6,
pp. 68-73, November 1985.

[10] S. J. Pratt, "Software engineering and educational support environments," University
Computing, vol. 8, pp. 42-45, 1986.

[11] R. S. Pressman, Software Engineering; A Practitioner'" Approach, New York, NY:
McGraw-Hill, pp. 26, 1982.

[12] J. B. Quinn and J. A. Mueller, "Transferring research results to operations," in Read
ing" in the Management of Innovation, M. Thshman and W. L. Moore, Eds. Boston,
MA: Pitman, pp. 60-83, 1982.

412

www.manaraa.com

[13] "Software Engineering Institute organizational and technical overview," Documenta
tion Services, Software Engineering Institute, CMU, Pittsburgh, PA 15213, 1985.

[14] B. C. Twiss, Managing Technological Innovation, 2nd ed. New York, NY: Longman,
pp. 176-205, 1980.

[15] "Wang Institute of Graduate Studies master of software engineering program de
scription and bulletin," Wang Institute of Graduate Studies, School of Information
Technology, Tyng Road, Tyngsboro, MA 01879, 1984.

[16] M. R. Woodward and K. C. Mander, "On software engineering education: experiences
with the software hut game," IEEE Trans. on Ed. , vol. E-25, no. 1, pp. 10-14,
February 1982.

413

www.manaraa.com

W CORPORATE SOFTWARE ENGINEERING
TRAINING & EDUCATION PROGRAM

Jonah Z. Lavi(Loeb), Moshe I. Ben Porat, Amram Ben-David

ISRAEL AIRCRAFT INDUSTRIES
BEN GURION AIRPORT, ISRAEL

Abstract

ISRAEL AIRCRAFT INDUSTRIES has developed a comprehensive educational

program in software engineering. Goals of the program include: the retraining of

college graduates to become software engineers with specializations in one of three

application areas; (Data Processing, Embedded Computer Systems on CAD/CAM

systems); and enhancement of the knowledge of currently practicing software engineers.

The program is centered around three distinct full-time courses of study having an

average duration of 7 months. The training program also includes a large number of

short courses and seminars. The company is currently planning a M.Sc. program in

embedded computer systems and software engineering in cooperation with one of the

universities in Israel.

This paper describes the needs leading to the development of such an extensive

program, the objectives and the structure of the various courses, the students, the
training center staff, the educational computer laboratories, and the lessons learned.

www.manaraa.com

INTRODUCTION

The activities and the products of Israel Aircraft Industries (IAI) are highly

computerized. Most of the products (Aircraft, Missile boats, Missiles, C31 systems)

include embedded computer systems, or are built as embedded computer systems (ECS).

The analysis, engineering, and development of these products is strongly supported by

extensive CAD/CAM programs. Also, the daily management of the corporation in the

areas of finance, stores, production and manpower is supported by very large data

processing systems (DP). Most of the software incorporated in IAI products and large

portions of the CAD/CAM and DP software is developed in-house by IAI software

engineers.

The demand for software engineers to develop of this diversified software is increasing

daily and the necessary manpower is not available. The competition for manpower on

the market is increasing and universities do not supply enough qualified engineers.

Furthermore, newly graduated computer scientists lack the necessary software

engineering skills and the necessary application domain training. Also, most of the

currently employed programmers and systems analysts lack thorough education in the

modern systems and software engineering technologies necessary for the development of

complex software systems. As a result, many systems are insufficiently analyzed and

inadequately designed. This causes delays in the completion of projects and unnecessary

expenses. These difficulties forced the company, like other companies (MCGI84), to

develop within the corporate training center a large program for the training of

software engineers. The program is divided into two major parts: training of new

software engineers and enhancing the knowledge of practicing software engineers and

programmers.

In the deliberations leading to the development of the IAI training programs. it was

realized that the background and education of various software engineers should be

different, depending on the types of products to be developed. Every software

developer needs a general education in software engineering and in some of the

underlying computer science theories. This knowledge, however, is not sufficient for the

development of diversified software products. IAI and other's experiences show that an

increasing portion of software development activities are in the systems requirements

analysis and testing phases. Performing these activities requires comprehensive

applications domain know-how (BEND84, SIMP82, SPEN84, WARN82) and familiarity

415

www.manaraa.com

with the methods used in the requirements analysis and testing in the specific domains:

ECS, CAD/CAM. & DP. Furthermore, the computerized systems and the programming

languages and tools used in the development of software in each of the domains are

different. Therefore it was decided:

a. to develop three distinct retraining programs (full time, 6 to 8 months
duration) tailored to the corporate software development needs in each of
the ECS, CAD/CAM. & DP domains.

b. to provide the basic application domain knowledge of the participants by
hiring college graduates with the necessary previous education, e.g.
engineers participating in the ECS software engineering course should ha\'e,
preferably, a first degree in physics or electronics. Participants in the
CAD/CAM software engineering course, should have preferably, a background
in aeronautical, mechanical or electronic engineering depending on the
class of CAD programs they are developing. Participants in the DP software
engineering course should preferably have a background in economics,
finance or industrial engineering.

The corporate educational programs for currently employed engineers are composed of

many courses and seminars. IA1 has realized, like similar organizations in the U.S.A.,

that an equivalent of a first degree augmented by retraining programs is not sufficient

to provide the staff needed for the development of modern engineering systems in

general, (BACC82) and in particular for software systems. IA1 is therefore supporting

the part time graduate education of many of its engineers and is currently negotiating

the development of a special M.Sc. program in embedded computer systems and

software engineering with universities in Israel.

The training programs provide engineers with basic knowledge in software engineering

and computer science. This is not sufficient. To improve software development

productivity. they must gain extensive experience in a particular application area.

Therefore, it is not recommended, by the authors, to transfer software engineers from

one major application domain to another. The efficient development of software

requires application domain specialization. As in electronic engineering, where each

engineer specializes in a particular area such as radar, communications, or Electronic

Warfare (E\V), software engineers also have to specialize in particular application

domains. Such specialization is also required to advance within the company where the

416

www.manaraa.com

natural promotion path is within specialized project areas.

This paper describes the objectives and structure of the major IAI software engineering

programs, demonstrates the uniqueness of each of the specialized courses, and provides

brief information about the students, the training staff and its background. Finally it

describes the educational computer training laboratories and some of the lessons

learned.

THE IAI TRAINING PROGRAM

The IAI program retrains college graduates to become software engineers. It is centered

around three major basic courses.' Each course is conducted once every year or two.

The courses are run as full-time courses, g hours a day, five days a week with 20 to 25

participants each. The three courses are:

1. Software engineering for embedded computer systems (1000 hours)

2. Programming of DP systems (g60)

3. CAD/CAM Software engineering (1030 to 1120 hours)

These courses are augmented by a 465 hours part time DP systems analysis course, the

planned M.Sc. program in embedded computer systems and software engineering, and a

large number of enrichment courses and seminars in topics such as software

management, software requirements analysis, configuration management, microprocessor

software development, real-time operating systems, Ada, and computer graphics.

Overall Objectives and Design of the Retraining Courses

Objectives of the three major retraining programs are that the participants will be able

to:

1. Perform necessary software development activities at various phases of the
life cycle from requirements analysis to integration and testing and during
maintenance.

2. use the software engineering methods and tools applicable in the respective

417

www.manaraa.com

application domain.

3. obtain "hands on" experience.

4. work in software development teams.

The specific objectives and content of each of the retraining programs are derived from

the overall objectives by a professional steering committee set up for each program.

These objectives are currently being adjusted according to detailed job analysis made

for each branch of specialization using a methodology developed at the training center

(KEDE85).

One of the major objectives of the programs is the development of a coherent software

engineering philosophy to be imposed throughout the courses. The accomplishment of

this objective is difficult since the eourses are taught by so many different instructors,

who come with various backgrounds and experiences and who have not all been
subjected to a thorough modern software engineering education. The training center

starf together with corporate R&D starf try to develop and to impose such an approach

but have not yet succeeded as much as they desire. This problem is being addressed

continuously and will be remedied with time as the courses are continuously improved

and redeveloped. More details about the approach use in the development of one of the

courses, the ECS course, are described in a previous paper by the authors (BEND84).

The detailed structure of each of the programs is entirely different and is tailored to the

needs of each of the domains. The objectives and structure of the courses are described

in the following paragraphs.

The DP Courses

The DP courses are the oldest in the company and were conducted long before people

had learned about software engineering. Their strueture is therefore different from the

more recently developed courses in ECS and CAD/CAM. software. The DP training

program is currently divided into two parts: a basic programming course (960 hours, 7

months, full-time) and an advanced systems analysis course for the graduates of the

basic course {465 hours, 8 months, part-time}. Most of the modern software engineering

concepts, methods and tools for requirements analysis are taught in the advanced

course.

418

www.manaraa.com

The philosophy behind this separation is well established in the IAI DP community

where most of its software engineers are trained first in software programming and

testing emphasizing modern structured programming techniques. Following this course

they work as programmers for two or three years to become proficient in programming

and testing. Only after they have received the necessary programming experience are

they sent to the more advanced systems analysis course. Systems analysis, requirements

definition, and negotiations with customers are performed by systems analysts, while the

junior software engineers are not expected to analyze application problems or to discuss

them with customers.

The specific educational objectives of the basic DP programming course are based on

this philosophy. It is expected that the graduate of the program will be able to:

1. write structured programs in the mM assembly language.

2. write structured scientific programs in a higher order language (Fortran).

3. write structured commercial and management programs in a higher order
language (COBOL).

4. integrate subprograms written in assembly language and in a higher order
languages into a complete program.

5. debug software using available methods and tools.

6. document software according to IAI standards.

The structure of the course is described in Table 1. As can be seen, strong emphasis is

placed on m~1 tools and languages since most of the W DP applications are run on

IBM machines. Many hours in this course are also devoted to the study of IBM

assembly language. This was regarded as necessary since some of the course graduates

are placed in the DP Center's Systems groups. This subject should be eliminated in the

future and be given later as an enhancement course only to those needing it.

FORTRAN is taught in order to widen the scope of knowledge of the participants and

allow them to use it in writing scientific programs when it is demanded by the

application or organization.

The complementary course to the DP programming course is the DP system analysis

course which, as mentioned, is given to experienced graduates of the basic course. It is

expected that the graduates of this course will be able to:

419

www.manaraa.com

1. Survey and analyze existing DP systems, describe their problems and
propose objectives for improved or new systems. The analysis should include
functional decomposition of the system and hierarchical decomposition of
existing data bases (manual or computerized).

2. Analyze the requirements and prepare the specifications for new or improved
software systems, considering the system objectives and constraints,
functional decomposition of the new system, hierarchical decomposition of
the data bases, and the use of existing and new equipment and software
packages.

3. Conduct feasibility studies and evaluate technical and operational
alternatives including the evaluation of existing commercial software
packages.

4. Design new systems using current software engineering methodologies.

5. Use all the available software development tools (e.g. PSLjPSA) in the
various phases of the development lifecycle and document the developed
software following IAI standards.

In distinction from the other retraining courses, this course is taught part-time to

practicing engineers, 14 hours per week. The duration of the systems analysis course is

approximately 8 months (33 weeks).

The structure of the course is given in Table II.

As can be seen from Table II strong emphasis is placed on topics, such as structured

analysis (DE~1A.79) and software design techniques and tools. As a prerequisite to the

requirements analysis course the students are given a course on DP in the organization.

This course stresses the description of the organizations and their structure, human

factors in the organization, and interviewing techniques. A section is devoted to

technologies such as data communications and microcomputer usage in DP. Little

emphasis is placed on software testing since a good course on this subject has not yet

been developed in the company. Such a course will be incorporated in future programs

and will also be taught as one of the enhancement courses.

The ECS Course

The first program which was designed to incorporate an overall software engineering

approach was the Embedded Computer Systems Software Engineering course. The

420

www.manaraa.com

developers oC this course Celt that the participants should be exposed, from the

beginning oC their training, to all the activities performed along the entire software

liCecycle. This was based on our experience that these engineers, even the junior ones,

are spending a large amount of their time on requirements analysis, testing and

integration.

The educational objectives of the ECS course are to provide participants with the basic

knowledge required for development and maintenance of an embedded computer

system's soCtware component. It is expected that the course graduate will be able to:

1. Analyze the specifications of simple embedded systems and their software
components, check for completeness, and enhance the specification;; as
necessary for software design.

2. Design a simple software module in accordance with modern approaches in
software design. The design should meet given specifications and should
account for the constraints imposed by the computer hardware and its
interfaces. The software design activities included are:

• explanation of the software system architecture which contairu; the
developed module.

• design of the software module according to the principles of structured
and object oriented design.(MYER78, PARN72, LISK72, BOOC83).

• description of the design in a program design language.

• design of the necessary data structures.

• analysis of hardware-software tradeoffs and their impact on the design
of data formats in the hardware interfaces.

3. Write structured programs, read them, and explain them. Writing of
software includes:

• writing of assembly language programs (8085/8086 ...)

• writing mathematical and real-time programs for mml and
microcomputers in higher order languages (PASCAL, FORTR.\.:."l",
PL/M).

• integrating subprograms written in assembly and high-order languages.

• integrating programs with a real-time operating system (e.g., RMXS6).

421

www.manaraa.com

4. Debug programs and integrate them with the hardware using debugging
tools a,-a1lable in the company.

S. Document software according to company standards.

6. Work in software development teams.

7. Understand commercial and engineering literature describing software,
computer hardware, and interface equipment.

The structure of the ECS course is presented in Table III.

An early version of the ECS course is described and analyzed in detail elsewhere
(BEND84). .As can be seen in Table III, strong emphasis is placed on the study of
microcomput.er architecture, interfacing, and programming. Even though most of the
embedded computer programs in the company are still written (due to practical

engineering considerations) in Fortran, it was found very beneficial to first teach the

students Pa...~al as an example of a structured language. This actually saved time in

introducing good programming techniques. The operating systems courses stress the

real-time aspects.

Strong emphasis is placed on software engineering in this program. Systems and

software requirements analysis is taught using a methodology developed at IAI
(LAVI84), and the object oriented approach is stressed in the software design course.
Based on the experience of the first offering of the ECS program, the guided analysis oC

an existing project was added. It covers all phases of the Iifecycle. The guided project
is taught before the final student project. More emphasis should be placed on ECS

software testing. This will be accomplished in future offerings of this program. It is

felt that the methodologies taught in specification analysis and software design are

sufficient. However, we have not yet reached the desired methodological consistency

between these courses to assure a smooth transition between the specification and design

phases.

The CAD/C.-.M Course

The most recently developed program is for CAD/CAM software engineering (KOIF84).

422

www.manaraa.com

The basic philosophy and objectives of this course are similar to those of the ECS

course. It is expected that its graduates will be able to develop a small complete

CAD /CAM program starting with the requirements analysis phase and proceeding

through all the development phases up to the final integration and testing, using the

large set of CAD tools available within the company.

The structure and content of the program are, however, very different from the ECS

program, as can be seen in Tables N, V and VI. The CAD/CAM program is divided

into two main sections: a basic program taken by all the participants (Table N) and

advanced specialization programs. The areas of specialization of the students are

determined before the beginning of the course when they are assigned to the various

departments in the company. Students who are assigned to CAD specialize in

computational geometry and numerical design methods (Table V) while students who

are aasigned to CAM specialize in the use of computers in manufacturing, numerical

controlled machines and robotics (Table VI). Even this division is not sufficient and

students who are assigned to Electronics CAD get additional training in that area.

The climax of the CAD/CAM course, as in the other courses, is the final project which

is done in groups of 2 to 3. This project is intended to expose students to the

development and integration of an entire program. Here they get the opportunity to

apply and integrate the various subjects they have studied, from the definition of

requirements up to the integration of a complete program.

Short Courses and Seminars

Many software engineers currently working in the company lack knowledge in the newly

developing topics in computer science, software engineering, and application areas.

Therefore, it was necessary to develop a complete battery of short courses and seminars

with an average duration of 50 to 100 hours each. Many of these courses are derivatives
of the major retraining courses described in the previous sections. The list of courses

includes, for example, subjects such as: microprocessors, requirements analysis,

computer graphics, Ada, artificial intelligence, software management and software

configuration management. It is impossible to list within this paper all the courses

which are given. It is important to stress however, that these short courses and

seminars are mostly tailored to unique populations according to the specialization

domains of the participants. This is necessary since it is expected that all short courses

423

www.manaraa.com

will include a large amount of exercises and "hands-on" experience. Such exercises have
to be tailored around examples with which both the particular groups of students and
instructors are familiar.

The M.Sc. Program in Embedded Computer SyStems and Software Engineering

As mentioned previously, it is realized that a Bachelors degree augmented by retraining
courses and short seminars does not provide a sufficient education in software
engineering (BRUC82). The complexity and the size of engineering systems in general,
of software systems in particular, and of application domain problems are increasing
daily. The company is therefore supporting the participation of many of its employees
in graduate studies in the local universities in areas where suitable programs are
available. Such graduate programs are not available today in embedded computer
systems and software engineering, or in general systems engineering. It was therefore
decided to develop M.Sc. programs in these areas hoping that they will later become
regular academic programs. The first program being developed is the M.Sc. program in
embedded computer systems and software engineering.

Major emphasis in this program will be placed on the analysis and design of
multicomputer systems and their software. This is of utmost importance today, as most
of the modern embedded systems are designed as multicomputer systems.
The program is intended for practicing software and systems engineers active in the
development of embedded computer systems. Some of them will naturally be graduates
of our retraining programs. It is expected that graduates of the program will be able to:

1. Identif}" potential applications of embedded computer systems.

2. Analyze the requirements of complicated multi-computer embedded systems
and specify their performance.

3. Specify the computational and communication hardware and their interfaces
with the environment.

4. Specify and analyze software requirements.

5. Design hardware systems and associated software.

6. Verify and validate the designs.

424

www.manaraa.com

7. Integrate and test the systems.

8. Manage the development of complicated embedded computer systems
projects.

It is expected that the basic required course in the program will be:

1. Architecture of modern computational systems (including multicomputer
systems, parallel computers and computer communications).

2. Formal methods in the analysis of general systems, computerized systems,
and their software.

3. Modern programming methods.

4. Analysis of embedded systems.

5. Software engineering.

6. Management of embedded computer system projects.

7. Analysis (not design) of linear, stochastic and sampled data control systems.

8. Discrete and continuous simulation and rapid prototyping.

Additional elective courses are recommended. The following are suggested:

1. Introduction to Artificial Intelligence.

2. Expert systems.

3. Introduction to VSLI design.

4. Design of man-machine systems.

5. Real-time operating systems.

6. Data bases for real time systems.

7. Communication networks

8. Operations Research.

The total number of courses to be taken will be based on the academic requirements of

the university that offers the program.

425

www.manaraa.com

The basic structure of the program is based on the MSE program of the School of

Information Technology of The Wang Institute of Graduate Studies (F AlR85).

However, it is augmented to include general systems issues, embedded computer systems

issues and multicomputer system analysis and design.

THE STUDENTS

This section briefly describes the methods used to recruit students for the three major

full-time retraining programs. Two patterns of student-recruiting are used. For most

of the courses students are recruited from outside the company through ads in the

newspapers, while for one course students were recruited internally. The experiment to

recruit employees internally was a failure, since managers tried to retain the most
qualified engineers and were reluctant to send them to a six months full-time retraining
course and possible transfer to other departments. Therefore, it was decided that in the

future students for all retraining courses will be recruited from the outside. Some

exception will be made to this ruling.

The students recruited for the retraining courses are required to sign up for 5-years with

the company after the completion of the course. The graduates thus guarantee that

they are going to stay with the company and that they will not search for employment

with other competing firms after completing the courses.

As mentioned earlier, all the students are university graduates. Originally. it was

preferred to hire students with no previous computing experience since it was found to
be difficult to change their programming habits and teach them the development of

programs according to modern software engineering techniques. This rule was relaxed

prior to the most recent offering of the courses when the company recruited students

with previous programming knowledge, including computer science graduates, and

retrained them to become software engineers in the various application domains.

The selection of students for each of the courses is a very complicated process.

Normally, around 800 candidates responded to the IAI ads in the newspapers. The first

selection is made using their curriculum vitae and their application letters.

Those candidates who are regarded as potential candidates for the course are imited for

basic written aptitude tests. Those who pass these tests are invited to oral and written
psychometric tests. Special batteries of test were developed by the corporate testing

426

www.manaraa.com

department. These test are designed to evaluate both their personality and their

cognitive qualities. Special emphasis is placed on detecting the ability of the candidates

to work in teams and their potential ability to advance and become group leaders.

These tests also predict very successfully the ability of the candidates to pass the

courses and their ability to be absorbed successfully in the departments within the

company. These tests are not regarded to be sufficient, however, and each of the

successful applicants is invited for an additional personal interview with a committee

whose members are the course manager, a representative of the DP, ECS or C.W/CAM

group (depending on the type of course), the corporate manpower department. and an

industrial psychologist.

Many issues associated with the type of students and their adaptation to the intensive

course program are described in a previous paper by the authors (BEND84). It would

be of interest to perform a more detailed statistical analysis of the patterns of

absorption of the graduates within the corporation, but such a study has not as yet

been conducted.

THE W TRAINING STAFF

Most of the programs are tailored according to the industrial needs of the corporation in

the development of qualified engineers for particular application domains. Development

of the courses requires staff experienced in software engineering and in the various

application domains. Many of the necessary subjects are not taught in the universities

around W, and some of the subjects are based on the advanced methodologies and

tools developed within W. Little assistance can be obtained currently from the

neighboring university staff and other institutions for the retraining programs.

Furthermore, it is expected that all instructors practice software engineering while

teaching, in order to assure continuous updating of their knowledge and experience.

Some of the instructors are W engineers who develop and practice the new

methodologies, and who are interested in teaching and are willing to spend the

necessary additional time beyond their regular activities and responsibilities. Other

instructors are employed directly, full-time, by the W Training Center. It is expected

that they will work part time in various W software engineering departments

developing software for real projects. Thus they gain and maintain the necessary

experience and also have the opportunity to introduce new technologies and try them

427

www.manaraa.com

out in the field. Unfortunately, there are some difficulties in finding suitable projects

for the training staff.

Development of new training programs, updating the old ones, and updating of the

training staff also requires continuous cooperation and assistance of the corporate R&D

department, the corporate CAD/CAM project and the corporate DP center. This

continuous cooperation provides the major stimuli for evaluation of the programs and of

the training center's staff.

A major objective of the training center is to improve the image of its staff, to upgrade

the level of its instructors and to build up their reputation. It is therefore planned that

the instructors will not only work on projects but that they will consult with various

corporate departments. This job enrichment of the instructors is needed to attract

more qualified and ambitious staff, since the major difficulty in further development of

the courses is the lack of sufficient qualified instructors in the training center.

It is expected that it will be easier to recruit necessary university staff for the new M.Sc.

program as many of the courses are by now established academic courses. However, it

is expected that it will be difficult to recruit university staff for the development of the

new courses in embedded computer systems engineering which are not given currently in

any of the universities and which will have to be developed especially for this new

program.

IAI CO.MPUTER TRAINING LABORATORIES

Basic Needs

A basic requirement of the training programs is that the students obtain sufficient

"hands-on n experience in the training. center laboratories during the courses. These

laboratories have to serve the needs of the three major retraining programs (DP, ECS,

CAD/CAM). Further, they also have to serve all of the short enrichment courses and

seminars (such as programming courses, microcomputer courses, operating system

courses, requirements analysis courses, computer graphics and the use of CAD/CAM

tools and programs).

Each of the laboratories has to provide services for a regular size class, normally

between 20 to 24 participants. To obtain optimal results the students are divided into

428

www.manaraa.com

groups of two; thus, each laboratory has to have at least twelve identical workstations.

These workstations should be compatible or identical, if possible, to the stations which

the students are going to use after the completion of the courses, thus reducing the time

they need after graduation to adapt to the corporate working environment.

Different software development domains in the company use different computers. Data

processing activities are mainly based on IBM equipment. CDC and VAX machines and

special graphic terminals are used in CAD/CAM activities. Embedded systems were

formaIly developed around a military version of the Data General Eclipse computers

and currently around INTEL microprocessors, MIL-STD 1750A based computers, and

VAX machines. It is desired that the students become familiar with the host and target

computers used in their application domains, and therefore the respective training

laboratories must be built around the described equipment.

The Development of the Laboratories

The first data processing courses, which are the oldest in the company, were conducted

at the facilities of an outside contractor and no special laboratories were built for them

in the company. Only towards the end of the 70's, when the embedded computer

courses were developed did the company realize the need for educational computer

laboratories. The first ECS laboratory facilities were very modest. They consisted of a

microcomputer laboratory based on twelve INTEL-SDK-Iike microprocessors, and eleven

terminals were connected to a very small Data General Eclipse computer (128K

memory, two small disks, five Mbyte each and some backup equipment). This lab was

run experimentally during the debugging phase of the basic course modules. Naturally

it was found that the equipment was not sufficient for this type of course.

Furthermore, using this laboratory configuration, software developed for the II\'TEL

microprocessors had to be loaded into the workstation (SDK) in machine language. As

a result of this experience, the computer configuration was increased, and advanced

operating system was installed and tape drives were added. Also a direct connection

was established bet~een the microprocessor working stations and the microcomputer

laboratory which allowed the use of a cross assembler hosted on the Data General

equipment and down-loading the code directly to the microprocessor workstation. This

configuration was used during the first embedded computer software engineering course.

In spite of the expansion of the laboratory, it was discovered during the course that the

429

www.manaraa.com

Cacilities were not adequate and that the response time was too slow. Also, it was

impossible to run real-time operating systems experiments using this configuration

because during such experiments the computer could be assigned, at most, only to two

pairs oC students; one using it in foreground mode and the second in background mode.

Thus, it was necessary to schedule the students to run the operating system experiments

till 12 o'clock at night. In spite of these difficulties, the course was completed

successful\y and the company realized the need and importance of expanded educational

laboratories. At that time, it was also decided to run the data processing courses within

the IAI training center and to improve the microprocessor laboratories. As a result, the

DG Eclipse computer was once more expanded, and a data processing laboratory and a

microprocessor emulation station were added.

This configuration supported most of the activities until it was decided to develop the
CAD/CAM course. At that time it was decided to enhance the laboratories. An

additional budget of $850,000 was approved. The current configuration of the

laboratories is:

1. A computing center built around a enhanced VAX-ll/780 computer
including hardware floating point accelerator, 8 Mbytes of memory, 3 fast
disc drives with one half Gbytes total storage, two unibusses for improved
I/O and a 285 LPM line printer. The computing center also includes the old
DG Eclipse computer.

2. A software development laboratory including 12 VT-131 terminals and a line
printer.

3. A DP laboratory with 12 terminals connected to the old DG Eclipse
computer emulating IBM equipment standards with a RSX-70 emulation
program and connected to the corporate IBM main frame.

4. A Graphics Laboratory including 12 high resolution 19" black and ",hite
graphic terminals and a high resolution black and white plotter.

5. A microcomputer development laboratory including 3 INTEL MDS series IV
workstations, one INTEL MDS series III, 8 VT-220 terminals connected to it
through 8 ISIS cluster boards in a Ethernet network manager by an Intel
network manager, with common resources of an 84 Mbyte disc drive and a
stream tape-cassette. This lab al\ows the concurrent work of 12 teams as
long as no hardware is needed. For hardware emulation only 3 teams can
work concurrently on the MDS series IV stations connected to three I 2 ICE
86, one I 2 ICE 286 and two ICE 51.

430

www.manaraa.com

6. A real-time laboratory including 4 Intel System-310 built around an iAPX-
286 processor and running under the Intel RMX 86 real-time operating
system. These systems can be used as host multiuser development stations as
well as dedicated target systems.

7. Five courseware development stations in the rooms of the instructors.

This configuration still does not provide the necessary computing power, connectivity,

and efficiency. An upgrade of computing power will be achieved soon by the addition

of a MicroVaxll and two Data General MV-2000 computers.

LESSONS LEARNED AND RECOMMENDATIONS

A comprehensive corporate software engineering program was presented in this paper.

Many lessons have been learned and many conclusions have been reached during the

development and running of this ambitious program.

1. The program provides an excellent solution to some of the software
engineering personnel needs of the corporation. The graduates have been
well absorbed and they develop software in various corporate plants and
departments. However, the program has not solved the shortage of
manpo\\er with 5 to 7 years experience, which is lacking everywhere.

2. The training of engineers who can develop software efficiently and effectively
requires the development of unique programs in each application domain:
DP, ECS and CAD/CAM. Sometimes it is even necessary to develop
subprograms dedicated to particular specializations within these domains.

3. Improving the effectiveness and productivity of software engineers requires
that they specialize in particular application areas and that they not be
transferred from one domain to another.

4. In spite of the similar objectives of the various programs and the similarity
between some of the subjects taught in all of them, it was found necessary to
redevelop these subjects for each application domain. Only very few
subjects can be developed and taught without modifications in all courses.
These subjects include for example programming languages, data structures,
data bases and operating systems.

5. The success of the training program and related seminars depends strongly
on:

431

www.manaraa.com

a. Continuous cooperation between the staff of the training center and
the staff of R&D groups responsible for the development of corporate
methodologies and tools.

b. Detailed specification of course objectives and thorough preparation of
educational material for each of the subjects taught in the courses.

c. Continuous updating of the courses based on lessons learned and
technological advancements.

d. The development of dedicated instructors who are up-to-date and
experienced in the use of modern software engineering tools and
techniques.

e. The careful selection of students through a very elaborate screening
process.

f. The availability of elaborate educational computer laboratories
equipped with machines, workstations and tools similar to those used
throughout the corporation.

The success of the training center in introducing modern software engineering

techniques requires not only the training of engineers but also requires a very large

promotional and educational effort to overcome the natural resistance of the old-timers

to the modern methodologies and tools. Some of this resistance is overcome by the

participation of representatives of leading development groups in the steering
committees developing the courses.

The software engineering training program presented in this paper is among the largest

of such programs run in industrial corporations. Naturally, the program does not meet

all the expectations of the people who are developing and running it. The success of the

program has however proven the basic assumptions made prior to its initiation. It is

the current objective of all those responsible for the program to evaluate once more the

structure and content of the programs, to develop more basic modules that can be

taught in all application domains, and to assure that modern software engineering

principles are used and taught in each of the subjects within the entire program.

432

www.manaraa.com

REFERENCES

BEND84 Ben David, A., et ai, "An Industrial Software
Engineering Retraining Course", IEEE TSE Vol-10, No.
6. November 1984.

BOOC83 Booch, G, "Object Oriented Design", in Tutorial on
Software Design Techniques by Freeman & Wasserman,
IEEE Computer Society 1983.

BRUC82 Bruce, J.D., et ai, "Lifelong Corporate Education",
Massachusetts Institute of Technology, October
1982.

DEMA79 Demarco, J., "Structured Analysis and Systems
Specifications", Prentice Hall, 1979.

F AlR85 Fairley, R., "Core Course Documentation, Masters
Degree Program in Software Engineering", School of
Information Technology, Wang Institute of Graduate
Studies, Tyngsboro, Ma., 1985.

KEDE85 Kedem, A., Smilansky, J., "An Alternative to ISD in
the Development of Training Packages for the Lavi
Fighter Aircraft", Proceedings of the 7th
Interservice/Industry Training Equipment Conference,
~ovember 1985.

KOIF84 Koifman, J., Katz, E., "CAD/CAM. Engineering Course,
Summary and Conclusions", The Proceedings of SIXTH
Conference of the Israel Society For CAD/CAM. (ITIM),
~ovember 1984.

LA VI84 Lavi (Loeb), J.Z., "A Systems Engineering Approach
to Software Engineering", Proceedings of the
Software Process Workshop, Egham, U.K., IEEE
Computer Society, February 1984.

433

www.manaraa.com

LISK72 Liskov, B.H., "A Design Methodology for Reliable
Software Systems", Proceedings, Fall Joint Computer
Conference, AFIPS, 1972 p.67.

MCGI84 McGill, J.P., "The Software Engineering Shortage: A
Third Choice", IEEE TSE Vol. 10, No.1, January
1984.

MYER78 Myers, G.J., "Composite/Structured Design", Van
Nostrand Reinhold Co. New York, N.Y., 1978.

P ARN72 Parnas, D.L., "On the Criteria to be Used in
Decomposing Systems into Modules", Communications of
the ACM, December 1972.

SIMP82 Simpson, C.L., Bettinger, C.O., "Are Computer
Science Degrees Necessary in Business DP?", Journal
of Systems Management, April 1982, pp 29-33.

SPEN84 Spencer, D.E., "A Proposed Curriculum for Aerospace
Programmers", Communications of the ACM, Vol. 27,
No.4, April 1984, p. 283.

WARN82 \\-arner, W.P., Nance, R.E., "The Development of
Software Engineers: A View from the User", National
Computer Conference, 1982 pp 293-299.

434

www.manaraa.com

TABLE I - THE DP BASIC SOFTWARE ENGINEERING
COURSE STRUCTURE

Subject

GENERAL - 30 hours

Enrichment Lectures

COMPUTER HARDWARE & INTERFACING - 65 hours

Digital Circuits and Logic
Introduction to Computers

30

25
40

COMPUTER LANGUAGES & OPERATING SYSTEMS - 550 hours

mM Assembly Languages
FORTRk~

COBOL
File Organization
Introduction to Operating Systems, Data

Bases and Communications
mMJCL

ADVANCED TOOLS AND DATA BASES - 175 hours

Programming mM Data Bases
Screens (~1FS-Message Format Services)
Report Generators
Application Generators
Debugging Tools
Use of existing software packages

SOFTWARE ENGINEERING - 60 hours

Introduction to Software Engineering

PROJECTS

Total course hours

Course weeks (7 hours per day)

435

150
70

230
40

30
30

35
20
40
40
20
20

60

80

960

137

www.manaraa.com

TABLE II - DP SYSTEMS ANALYSIS COURSE

COURSE STRUCTURE

SUBJECT

DP IN THE ORGANIZATION

DP TECHNOLOGIES - 95 hours

Data Communications
Data Bases
Microcomputer Applications in DP
Application Generators

SOFTWARE ENGINEERING - 145 hours

DP Requirements Analysis Methods and Tools
Software Design Methods and Tools
Management Techniques & Tools

ENRICHMENT LECTURES

FINAL PROJECT

Total Course Hours

Course Weeks (14 hours per week)

40

35
30
15
15

95
25
25

15

170

465

33

TABLE III - EMBEDDED COMPUTER SYSTEMS SOFTWARE
ENGINEERING COURSE

COURSE STRUCTURE

Subject

GENERAL - 60 Hours

Typing + Edit
Introduction and Enrichment Lectures

COMPUTER HARDWARE AND INTERFACING - 250 hours

Digital Electronic Circuits and Logic
Introduction to Micro-computers

436

25
35

45
45

www.manaraa.com

TABlE ill (continued)

Introduction to Micrcrcomputers Interfacing 50
Data Communication 50
Introduction to the Intel iAPX86 components family 60

mGHER ORDER LANGUAGES & OPERATING SYSTEMS - 285 HOURS

PASCAL (as a structured language)
FORTRAN
Introduction to PL/M
Data Structures
Operating Systems and RMX86

SOFTWARE ENGINEERING - 165 hours

Requirements Analysis
Software Design
Software Testing and Quality Assurance

PROJECTS - 240 hours

Assembly Language Project
Guided Analysis of an Existing Project
Final Project

Total course hours

Course days (7 hours per day)

55
65
25
50
gO

gO
50
25

40
50

150

1000

142

TABLE N - CAD/CAM SOFTWARE ENGINEERING COURSE
DETAILED STRUCTURE OF BASIC PROGRAM

Subject

GENERAL - 50 HOURS

~Typing

Enrichment Lectures

COMPUTER HARDWARE & INTERFACING - 165 Hours

Digital Circuits & Logic

437

12
38

40

www.manaraa.com

TABLE IV (continued)

Introduction to Computers (VAX & CDC)
Introduction to Microprocessors
Graphic Hardware
Computer Communications

COMPUTER LANGUAGES, OPERATING SYSTEMS
& DATA BASES - 300 hours

FORTRAN 77
Data Structures & File Management
Introduction to Operating systems
Introduction to Data Bases in CAD/CAM

50
35
25
15

75
70
25

130

SOFTWARE ENGINEERING & SOFTWARE TOOLS - 70 hours

Introduction to Software Engineering
Designing CAD Programs

INTRODUCTION TO CAD/CAM - 190 hours

35
35

Introduction to CAD/CAM & its !AI Application 65
Development of Graphic Programs 70
Man-Machine-Interface Techniques and Algorithms 55

FINAL PROJECT 135

Total Basic Program Course Hours 910

Course days (7 hours per day) 130

TABLE V - CAD/CAM SOFTWARE ENGINEERING COURSE
SUPPLEMENTARY SPECIALIZATION IN CAD

Subject

Basic Computational Geometry
Computational Geometry Workshop
Numerical Design Methods

Total hours

438

70
30
20

120

www.manaraa.com

TABLE VI - CAD/CAM SOFTWARE ENGINEERING COURSE,

SUPPLEMENTARY SPECIALIZATION IN CAM

Subject

Computers in Manufacturing
Numerical Controlled Machines and Post Processors
Industrial Robotics
Group Technology

Data Transfer Techniques
(Design to Manufacturing)

Total hours

25
85
45
15

20

190

TABLE VII - NUMBER OF PARTICIPANTS
IN THE RETRAINING COURSES

Embedded
Computer

Data DP System System CAD/CAM
Year Processing Analysis S!W Eng. S!W Eng.

1975 16

1976 15

1977 18

1978 18

1979 17

1980 18

1981 17 19

1982 18 24

1983 20 22

1984 21 22 25

1985 19 26 23

439

www.manaraa.com

SOFTWARE ENGINEERING: INDUSTRY MEETS ACADEMIA

R. A. Radice and R. W. Phillips

Rensselaer Polytechnic Institute and
International Business Machines Corporation

ABSTRACT

Software Engineering education stands at a turning point as industry
continues to assert the need for more of an industry perspective in the
education of software engineers and computer scientists. A two-semester
course sequence in Software Engineering, taught at Rensselaer Polytechnic
Institute is attempting to meet that demand by balancing theory and practice
in an education environment which simulates industrial development of
Software Engineering tools. Prevalent methodologies across the software life
cycle are addressed, alternatives are assessed, and preferences are
designated as the courses progress through the life cycle. The projects are
assigned to teams and are directly related to automating parts of software
production. Case studies are used on a weekly basis to reinforce concepts
and to explore alternatives. An essential set of software engineering process
principles serves as the foundation for this teaching approach. The
students, while taxed with a demanding work load, have indicated that the
approach is highly rewarding in the graduate education program.

I. INTRODUCTION

When we began to teach Software Engineering at Rensselaer Polytechnic

Institute (RPI) we set three goals for ourselves. First, that the course

would honestly model the life cycle of program production from an industrial

perspective. Second, the courses as structured and taught would be

significantly different from the typical approach to teaching software

engineering. This was not to suggest that we believed we were the only ones

to have thought of or to have used the approach which we shall shortly define,

but we certainly were not aware when we started of anyone using the same

approach. Later, we learned of Berzins, Gray, and Naumann at the University

of Minnesota who have a similar, though different, approach [1]. Finally,

perhaps in our naivete, we wanted our two semester course to become a model in

www.manaraa.com

academia and industry. This latter could only be accomplished if we

maintained a steady stream of feedback from the students, RPI, and ourselves.

For the latter we fortunately had the advantage of observing each other for

many of the lectures, case studies, and class discussions.

It is now three years since we started, and in keeping with our goals of

developing a model approach to teaching Software Engineering and of

maintaining feedback, it is appropriate to now document our experiences in

order to communicate with a larger audience of Software Engineering educators.

We hope and anticipate that readers of this article will provide comments,

both pro and con, to us, for ultimately we do want the best course for our

students.

Briefly, our combined backgrounds cover over 55 years in the software

industry. Although specifically this is with IBM, we have over the last ten

years been involved with assessment of the state of Software Engineering

throughout the worldwide industry. While our backgrounds are with IBM, our

opinions as stated in this paper are our own and do not necessarily represent

those of IBM.

II. HOW THIS COURSE CAME TO BE

In November 1983, Ron Radice was contacted by Herb Freeman, then of RPI, now

chairing the Computer Science Department at Rutgers, asking if he would

consider teaching as adjunct associate professor for RPI's two semester

graduate course in Software Engineering. As with many opportunities which

present themselves, this one came at a time when a commitment to be available

every week for fifteen weeks each semester simply was not possible because of

business needs to travel, but the offer was of much interest. After resolving

with RPI that the problem of being available every week could be addressed

with two adjuncts teaching the courses, the only question remaining was who

441

www.manaraa.com

would be interested and could do an excellent job of rounding out the courses.

Dick Phillips was the obvious answer for many reasons. And so in partnership

we committed to ourselves and to RPI that we would be available to teach the

two semester course sequence in Software Engineering.

We added a constraint of teaching on Monday nights only, to allow us added

flexibility for business travel during the week which was a frequent

necessity. Teaching on one night of each week meant that we would be engaged

with the students for three hours of class. This in itself was taxing to both

us and the students initially, but over time seems to have worked quite

successfully and indeed offers advantages to the students as well.

We started teaching with the second of the two-semester sequence. Our plans

were to have the first semester begin with the initial stage of the software

life cycle, to complete a "first release" of a project by the end of the

semester, to test and enhance the project by the end of the second semester

using a different team of students than those who had developed the initial

project in semester one. Since all this was not achievable, we taught the

full life cycle of software engineering alternatives in methodologies from

Requirements through Systems Test. We succeeded on many counts, but we

probably subjected our students to an exceedingly time consuming and demanding

semester. Their input and feedback was fully integrated into our next version

of the courses and helped us to create a better course sequence.

In September 1984, we began the first two-semester sequence. In a number of

ways our approach was still too demanding for the students and, as it turned

out, for us also. Semester One had 57 students enrolled. We were both

excited by the turnout and concerned when we realized we could not get to know

all of these students as well as we would like. We were well aware that the

intensity of the course as we would teach it demanded that we establish a good

relationship with each team and each student. Due to the large class we

442

www.manaraa.com

succeeded with some, but failed with others. This was our disappointment, and

we resolved to limit the class to no more than thirty students in the future.

We were still working out some details in style and approach during these two

semesters of Fall 1984 /Spring 1985, all of which were integrated into the

Fall 1985/Spring 1986 sequence. If subsequent student feedback is to be a

judge, we indeed corrected many of our initial problems, and the Fa11

1985/Spring 1986 sequence was more of a success than the previous sequence.

As our goal is to continue to evolve the course through feedback, and early

indications are that Fall 1986/Spring 1987 will be yet a better sequence for

our students.

III. COURSE OBJECTIVES

First, we intend that the students leave the course with an understanding of

the prevalent Software Engineering methodologies which exist across the

development life cycle. While we do not intend that this be a survey course,

we do present alternatives to each methodology. In all cases we made strong

recommendations for preferred alternatives that are at the leading edge in

industry today and which show evidence of having significant positive impact

on quality, productivity or schedules.

Second, we intend to prepare the students for industry or at a minimum give

the students a practical view of what industry is doing and what is expected

of computer science/software engineering graduates who enter industry. This

does not imply that we are trying to fully address the issue of

professionalism, but we do agree that some changes need to be made to the

predominant approach to preparing students entering the software industry, and

we believe we have a role in that re-direction. This issue was hit on rather

smartly in a quote from James Martin in Curt Hartog's article Of Commerce and

Academia. Martin said,

443

www.manaraa.com

I think many of the top people in computing at the present time are

extremely dismayed by what's happening in the computer science schools.

I was at an important facility of one of the world's largest computer

manufacturers recently, and the general manager of that facility

commented that he would, literally, never hire a computer science

graduate, that's an indication of the extent to which the computer

science departments are perceived to be out of date [2].

In striving toward this objective, we have not dwelt heavily, and certainly

not exclusively, on the theory behind the Software Engineering methodologies;

rather we have sought a tuned balance between theory and practice, where

practice takes the focus.

Third, we intend that the student after leaving our courses remember the

principles of Software Engineering process and that these principles are

carried on into the work and careers of each student whether in industry or

academia. This objective requires that we give clear focus during the two

semesters to process and process control in software as it exists today and

the direction it is taking in industry. It is intended that the student will

leave with an understanding of how projects and products can be controlled

through process to achieve higher quality, higher productivity, and improved

schedules. We will talk more on these principles in the next section.

Fourth, we intend that the student get a full life cycle view of software

production. This life cycle view is based on the ETVX model of process

definition [3]. The life cycle not only runs from the Requirements Stage

through ship to the customer, but includes a maintenance and enhancement

release. As a result of the ETVX paradigm emphasis, we take time in each

process stage to focus on and ensure the use of validation methods relevant to

each task during the life cycle.

444

www.manaraa.com

Fifth, we want the student to learn to continuously re-evaluate software

projects in terms of both Software Engineering and software economics. We get

the students to struggle with the practicality of building a zero defect

product and the cost trade-offs for doing so.

Sixth, we want the students to individually learn how to think through a

software problem and to know how to assess assumptions, alternatives and

trade-offs in the problem.

Seventh, we want the student to learn why data is essential to improving the

state of Software Engineering. We focus on data from a three tiered

perspective of maturation along the Software Engineering evolution path: Data

gathering is the first step, which can then lead to good data analysis, which

in turn can lead to good goal setting to manage quality, productivity and

schedules.

Eighth, we intend that the student's input and feedback provide for a better

course for those after them.

Ninth, we want the students to become excited about the potentials through

Software Engineering and software process. We even hope that the student will

have fun during these two semesters.

Tenth, we have intended that our teaching methods be fully integrated towards

supporting the previous nine objectives. In our approach, we require that the

class be broken up into teams, which will be assigned a project which is

related to automating software engineering practices, tasks, and

methodologies. We require the students to keep a project workbook, which

reflects the full life cycle work and evolution of their project. We support

the evolution of the project with case studies, which are intended to focus

the student on particular problems in Software Engineering. The class

445

www.manaraa.com

functions as a hypothetical software corporate body named the RADLIPS

Corporation, which is our way of setting the stage for management/employee

dialogues throughout the project life.

IV. SOFTWARE ENGINEERING PROCESS PRINCIPLES

We believe that if Software Engineering is to advance rapidly as a discipline

it requires a set of principles to guide the direction of the profession. We

believe that these principles which are drawn from our work at IBM include the

following: [3], [4]

1. The process of software production must be formally defined.

2. The process must be actively, continually, and consistently managed to
achieve consistently improving quality and increasing productivity.

3. The process must be decomposed into stages. Each stage must be decomposed
into tasks, each of which has an entry criteria, validation mechanism, and
exit criteria.

4. Each work item exiting from a task must be validated before proceeding
into another task as input.

5. Data capture, analysis, which includes feedback, and goal setting are
essential for improving both the product and the process. Periodic
process assessments must be planned and executed to monitor effectiveness.

6. Procedures must be established to certify product quality and implement
any necessary corrective actions as they may be needed.

7. Problems with the product or process must b~ recorded and analyzed for
cause, effect, and improvement. This 1S to be done both from a
statistical assessment and from a defect extinction perspective [5].

8. Changes to the product or process must be controlled.
recorded, tracked and evaluated for effectiveness.

They must be

9. The software production process must be concerned with not only the
development perspective, but must include the perspectives of testing,
publications and related material, build and integration, marke·ting and
service, and process management. The overall product is composed of all
these perspectives.

In net, these principles support our belief that a quality process is a

necessary ingredient to achieve a quality product.

446

www.manaraa.com

V. STUDENT BACKGROUNDS

RPI has both an Electrical, Computer, and Systems Engineering Department and

a Computer Science Department offering courses related to software.

Students in our course are pursuing degrees in Computer Engineering and

Science through both departments in about equal numbers.

The following is a profile of the students that have enrolled in this course.

Statistics

Approximately sixty-five percent of those taking the course are engaged in

Masters programs; about 30 percent are pursuing the Doctorate degree, and

about five percent have been undergraduates with sufficient experience and

skill to be admitted to the course.

About 20 percent of the students that have taken this course are women.

About one-third to one-half of all students that have taken the course are

citizens of Asian, Middle Eastern, or Latin American countries.

About one-third are currently employed as programmers and analysts in

industry, government or the military.

Skills And Experience Levels

During the first session of the semester, a questionnaire is completed by the

students to survey individual background, experiences, skills, interests, and

goals in taking the course.

Of the one third employed, most commute to the campus from their regular

work locations at least twice weekly for this course. (One evening for the

weekly lecture session and at least one evening or weekend trip for a team

meeting, or to work on campus with various computing facilities).

All have had experience in coding a program, either through prior academic

studies or in a work environment.

447

www.manaraa.com

• Most are familiar with step-wise refinement principles, but few are

familiar with structured programming constructs at a working level.

• A few, (less than half), have had experience designing a program from a

given set of high level specifications.

• A handful (about 20 percent) have used specific design notations, such as

pseudocode.

• Almost none are familiar with data abstraction as a fundamental design

methodology.

• Almost none have had experience in defining program user requirements or

in project planning.

• None are familiar with formatted high level requirements and specification

languages or techniques, such as PSL/PSA, SADT, SREM.

Selection Criteria

The course, in its current state of evolution, has a limited enrollment of 30

students per semester, and therefore the students are screened based on need

to take the course and suitable academic background. Students wanting the

course to only gain an introduction to the subject of Software Engineering are

advised not to take this course, but to seek a survey type course in the

subject instead. This leaves those who have already begun channeling their

studies and careers toward software engineering or computer science, and who

seriously want to become practitioners in the software development process.

Within this set of students, further screening is done on the basis of the

need for the two-semester sequence as a specific requirement for a student's

particular degree program.

VI. COURSE MODULES AND TOPICS

The course is conducted in two 1S-week semesters, each having a unique scope

and emphasis. Lectures are conducted once a week for three hours each. A

large-scale software development environment is simulated by means of team

projects and case studies. The two semesters constitute a sequence, and

448

www.manaraa.com

completion of the first semester, or its equivalent, is prerequisite to taking

the second.

First Semester

In terms of the software life cycle model previously described, the first

semester encompasses the stages defined for Requirements, Design, Coding, and

Unit Testing.

Emphasis during this semester is on techniques and disciplines for defining a

product technical strategy, collecting and prioritizing user requirements,

validating the requirements against prospective users, writing program

specifications, dividing a large-scale development project into workable

subparts, transforming the requirements to high-level design specifications,

subsequently to low-level design and finally to code.

Some of the theory, techniques and disciplines taught during this semester

include use of a formatted entity-relation language for defining requirements

and high-level specifications, validation of requirements through user

reviews, use of various design notations such as pseudocode, use of rigorous

Inspection techniques for validating design against requirements and code

against design.

Some of the topics for the first semester are:

•

•

•
•
•
•
•

Software Engineering History And Outlook

Introduction To The Software Development Process

Requirements Engineering Methodology

On Formalism In Specifications

An ER-based Model For Requirements And High Level Specifications

Planning The Project

Team Dynamics

449

www.manaraa.com

•
•
•

•
•
•

•

•
•

Project Notebook Purpose And Structure

Design Overview

Bridging Requirements To Design

Design Methodologies

Software Human Factors

User Documentation

Design And Code Inspection Methodology

Use Of Structured Programming Constructs

Introduction To Unit Testing

Second Semester

The second semester encompasses all formal test stages, shipment to users for

operation, and servicing of the product in use.

In addition to testing methodologies, the second semester emphasizes 1) many

of the control and management aspects of the development and software service

process, 2) the causes and prevention of problems associated with inheriting

"old code" from prior developers (simulated in the classroom by inheriting the

project developed by other teams during the prior semester), 3) the

collection, analysis and feedback of data to manage and improve the process,

4) factors thought to affect the users' perception of product quality, 5) a

set of criteria for evaluating the effectiveness of a software development

process, and 6) finally, a technique for applying this set of criteria to a

given process (their own) and making improvements.

Some of the topics for the second semester are:

Evaluating Inherited Program Materials

Causes And Prevention Of "Old Code" Problems

• Software Re-usability And Re-use

• Software Metrics

450

www.manaraa.com

• Program Estimating

• Error Cause Analysis

• Overview Of Testing Process

• Test Planning

• Unit Test Methods

• Function Test Methods

• System Test Methods

• Configuration Management

• Software Packaging And Distribution

• Managing The Process And People

• Legal And Business Aspects Of Programming

• Some Factors Affecting User Perceived Quality

• Typical Process Problems And Solutions

• A Programming Process Evaluation Technique

• Improving A Development Process

VI. COURSE PROJECTS

The course centers around a set of development projects, each performed by a

small team of students. Each project forms component of an integrated system

of Software Engineering tools. During the course, each team will:

• Define the requirements for its component and how it fits into the whole

product system

• Validate the requirements defined against prospective users (the rest of

the class and the professors)

•

•

•

•

•

•

Design the component

Validate the design against the defined requirements

Write a Users' Guide

Implement the component

Validate the implementation against the design and human factors

Write a test plan

451

www.manaraa.com

• Validate the test plan

• Write the test cases and test scenarios

• Validate the test cases and test scenarios

• Write a Service Manual

• Formally test the component

• Ship the completed component to users (the rest of the class)

• Service the component

The Target Product

The target product is a "Software Developer's Environment," comprised of an

integrated set of tools that support software development tasks throughout the

entire development life cycle.

The important reason for choosing a Software Developer's Environment as the

target product and not some other equally challenging type of software product

is that to adequately define the requirements and high level design for such

an offering, the students must define how to automate the very Software

Engineering process being taught in the course. This sort of "recursive

learning" frequently surfaces some interesting Software Engineering issues and

questions on the part of the students. For example, to decide on how

permissive or aggressive a particular design tool should be in enforcing

agreed to local design conventions or practices, the student must address the

issue of freedom to innovate versus regimentation in the prospective user's

design environment.

Available Projects

The class is divided into teams discussed in the next section. Each team

develops a separate component of the Software Developer's Environment.

Over the past three years, ten or more projects have evolved from which the

students can choose. Tested and documented program packages also exist for

452

www.manaraa.com

many of the projects from past classes, to be picked up and enhanced with new

function by teams in the incoming class.

The assortment of projects from which to currently choose is:

Formatted Language Analyzer for requirements and high-level design
specifications.

Specification Language-To-Design Language Translator

Graphic Design Environment

Static Design Analyzer

Automatic Code Generator

Code and Module Design Complexity Analyzer

Code Inspection Verifier

Test Case Generator

Old-Code Restructuring Tool

Code Reverse-Engineering Tool

Process Metrics And Management System

Initial Requirements Input

During the first session of the first semester, the students are given a brief

discussion of the market needs for a "Software Developers Environment" and a

description of the above possible component parts. They are then formed into

initial teams and asked to report back to the class in about thirty minutes

with answers to two questions:

1. Which of the above components would the team prefer to develop during the

semester and why?

2. What types of additional questions will have to be answered to complete

the definition of requirements for the chosen component?

Team questions and concerns with project requirements are then discussed in

class, using responses to questions to help bound and keep the requirements

definitions on track. Few direct answers are volunteered, however. Instead,

most questions are redirected into class discussions of the issues that would

453

www.manaraa.com

be involved, and the assumptions that might have to be made about user needs

for the proposed Software Developers Environment, such that satisfactory

statements of the requirements could be derived. The student teams are

charged with continuing the exercise outside of class, and to return for the

next session with a set of answers to their initial set of questions, a list

of supporting assumptions, and a list of further questions that in turn must

be answered to proceed further with the requirements definition process.

This approach marks a significant departure from the initial expectations of

most students. In prior classes, or work environments to this point in their

careers, assignments have been considerably more defined and bounded. The

apparent purpose for the approach is to get the student involved at the outset

in a "life-like" requirements definition process. However, from the

educator's standpoint, the more important benefit is that it forces the

student to begin formulating some key working concepts about the Software

Engineering process itself, which is the very process being taught in this

course. This "recursive" theme is maintained throughout the course by means

of case studies and other project work designed to challenge the students'

thought process.

An observation frequently reported by the students at the end of the course is

that the approach forced them to think for themselves, as well as solve

problems as teams, more than any other course or work experience in the past.

VII. PROJECT TEAMS

Teams of three to five individuals are about the optimum size for this

particular course. Many students commute a considerable distance from their

place of regular employment to the university campus, and since the course

relies heavily on outside work on a team basis, students that have proximity

to each other in their work locations are, if possible, placed on the same

team.

454

www.manaraa.com

An attempt is also made within these constraints, to distribute individuals

with prior project experience equitably among the teams.

Organization

Rather than preassign contrived organization and individual roles within each

team, we believe it is a more effective and true-to-life if the roles are

allowed to evol ve naturally, in response to the team tasks at hand and

individual skills and interests. As in most well run, professional

organizations, this form of natural selection tends to build teamwork and

capitalize on particular strengths of each individual.

Dynamics

About midway through a semester, problems begin to surface in some of the

teams regarding individual roles and team work. For example, a team member

may lack experience in presenting and "selling" ideas to the group, and upon

failure to obtain instant acceptance of an idea may withdraw and start a

redundant splinter activity to "show" the group that the idea is better than

the current approach. Some individuals over-commit to the team and never seem

to complete agreed-to tasks on time, while others seem able to handle all

agreed to tasks and more. Some individuals are more comfortable at coding

than designing, or at planning the project than executing it, or at testing

and debugging than at specifying a test plan, and so on. When we recognize

the need to discuss team problems during the semester, a lecture is inserted

on "Team Dynamics." Questions are discussed in class about how individual

strengths can be capitalized on for the growth of the individual and benefit

of the team. For example, should all individuals strive to become highly

capable in all tasks on the team? When might team work stifle creativity, and

when might it promote creativity through synergism? How can one present

technical ideas effectively? What do you do when your idea is disagreed with?

When might individual splinter efforts be beneficial and when might they not?

455

www.manaraa.com

Many of the students are appreciative of this discussion and it has an

immediate and visible effect on enhancing teamwork for their project. It also

has given them valuable future insight into software development teams in a

typical industrial environment.

VIII. PROJECT WORKBOOK

A workbook is required for each team. The workbook is the project management

tool for the project and must contain the following information at a minimum:

1. PROJECT PLANNING

a. Product size projections at the requirements and each design stage,
actuals at the coding stage.

b. Development person hours, planned and actual, by process activity
through all process stages.

c. Schedule Checkpoints

2. DEVELOPMENT PROCESS AND PRACTICES

a. Brief description of planned process stages and validation steps
through test.

b. Team assignments and activity log

c. Meeting minutes and duration

d. Defect reporting procedures

e. Design Change Request procedures

f. Design Change tracking log.

g. Retention and control procedures for design materials

3. PRODUCT VALIDATION RESULTS

a. Major and Minor defects found during all inspections

b. Errors found during each test stage

c. Results of Usability/Installability Walkthroughs

4 . DEVELOPMENT WORK ITEMS

a. Most current Requirements and Product Level Design material

b. Most current Component Level Design material

c. Most current Module Level Design material

d. Most current Code Listings

e. All other work items resulting from Case Studies

456

www.manaraa.com

5. PROCESS DATA FOR ANALYSIS AT END OF SEMESTER

a. Interim versions of all design documentation having reader comments,
critiques, professors' comments, etc.

b. Old and revised size estimates at each design stage, and reasons for
variance.

c. Rationale for variance between planned and actual person hours for
each activity.

d. Rationale for variance between planned and actual calendar checkpoints
for each activity.

e. Number of Design Change Requests initiated at each stage.
f. For each Inspection held, the number of person hours for:

• Preparation

• The Inspection session

Resulting rework

g. For each defect discovered during inspections and the testing stages:

The Process Stage in which the defect was introduced.

• The inspection or test activity in which it was detected.

An estimate of the earliest Inspection or test activity in which
the defect could theoretically have been detected.

IX. CASE STUDIES

In business management schools the case study method provides for a discussion

of real life situations that business executives have faced. The situation,

relevant information and facts are given, and the student is asked to evaluate

the case under review and to come to his own conclusion. We have drawn from

the successful history of business case studies as a vehicle to help our

teaching of software engineering and Software Engineering process principles.

Our case studies are usually assigned to coincide with a lecture which has

been given and is tied to a checkpoint in the project life cycle evolution.

The case is to be analyzed by each team assigned to the course project. We

stress that it is important that each team arrive at it own position on each

case. Their positions may vary substantially based on the project assigned to

the team. This leads to broader views than what each project might teach by

itself .

457

www.manaraa.com

At the next class meeting the case is discussed. Sometimes each or selected

teams are asked to present their position. Other times the case is discussed

as a general topic with the entire class and is led by one of us. In either

event the purpose is to explore all aspects of the case situation before

reaching any conclusion. It is not oui objective to say what or who is right

or wrong, rather we want discussion to explore alternatives and foster

thinking about the alternatives to a preferred solution. At the summary we

may state the pros and cons of each position presented during the discussioh.

The. following is a list and synopsis of each case study we used in our last

two-semester sequence. Case studies One through 12 were used in Semester One,

and 13 through 24 were used in Semester Two.

1. I nitial Requirements for Class Project

The student teams are given an overview of the Software Developers

Environment and asked to formulate an initial set of requirements for

their team's component. They must also describe assumptions made about

the portion of the Software Engineering process that their component is to

automate, and a list of questions that must be answered to complete the

requirements process. This case study is the student's initial exposure

to the type of problem solving and communication techniques that will be

propagated throughout the course.

2. Definition of Project Processes

The students are asked to define the process they believe they will follow

during the course. The definition should be based on their previous

experience in school or at work. The intent is to show how much of their

attitude and viewpoint changes by the end of the semester.

3. Code Inspection

A real-life example is given to the class with design specifications and a

458

www.manaraa.com

coding implementation. The teams are asked to inspect the code for

I.
errors, list and categorize the errors, and to keep data on their

inspection and preparation rate. Their findings are compared to the set

of finite errors "planted" in the implementation and optimal preparation

and inspection rates.

4. Human Factors

The students are asked to do a human factors task assessment for their

project from three major categories for their defined users; a) user

effort to learn or relearn each task, b) effort to perform each task, and

c) the effort of experiencing errors while performing each task. Each

team presents their conclusions.

S. Formalizing Requirements

This is a three-part case study coinciding with the Requirements

Engineering lectures in which a systematic method for transforming user

requirements into a high-level design is taught. The final output of the

case study for each team's component is an initial "Requirements and High

Level Design Specification" written in a formatted, entity-relation

language developed for the course, called "A Specification Language"

(ASL)."

6. Project Planning

Component teams are given a planning structure (the Project Notebook

outline) and asked to formalize their project plan with respect to

schedules, size estimates, projected quality level, etc. The case study

also requires the team to establish and document their process for defect

reporting and tracking, design change control, and collection of other

essential data for process management and future analysis.

459

www.manaraa.com

7. The Requirements to Design Bridge

The teams are asked to complete their product level of design based on

balancing the defined requirements with the resources and time they have

available. As the projects are all too big to be completed in one

rewrite, they must make decisions on what to restrict or select as

necessary for Release 1. The ground rule is that they must have a working

functional product subset in Release 1.

8. Design Methodology Comparison

The teams are asked to select which design methodology best fits their

problem/project. They can pick from any specific approaches in Function

Flow, Data Flow, Data Structure or Object oriented methodologies. They

must make their case as to which is best for their problem/project. Each

team presents their conclusions.

9 . Abstract Data Types

The teams are asked to select an example design problem and express the

solution as an ADT. Each team presents and discusses their example with

the class.

10. Object Oriented DeSign

Regardless of which design methodology the team may have selected they are

asked to develop a solution that is object oriented for at least part of

their low level design. They are asked to discuss their problems in doing

this if they had not started with an object orientation initially.

11. The Users Guide

Each team is to develop a users guide for their project, to distribute it

to the other teams, and to solicit input for changes.

discussed in class.

460

The guides are

www.manaraa.com

12. Project Post Mortem

Data collected during the semester is analyzed to determine how

improvements could be made in program sizing methodology, defect detection

efficiency, and error prevention. In this case study, the students gain

an initial experience in using their own data for improving their process.

13. The Grass is Greener in the Other Project's Yard

This is the first case study in semester two, and projects and teams will

have been shifted. That is, teams will be working on different projects

than those they completed in semester one, and the team composition may be

different. These new teams are asked to evaluate the product and project

they inherit for testing and enhancement from a technical perspective with

respect to Release 1.

14. Comprehensive Test Plan

Teams are asked to develop an overall test plan and strategy for their

component, based upon preceding lectures on the types of testing employed

in the Unit Test, Function Test, and System Test stages. Schedules and

resources planned for each stage are included. Emphasis is placed on

defining proper entry and exit criteria for each stage.

15. Unit Test Plan

This is a detailed plan to achieve adequate path coverage during Unit

Test. Planned tests are described in detail, along with a rationale for

their use.

16. When do You Stop Testing?

The students are asked to define a set of test cases which are derived

from Cause and Effect Graphs, to determine the degrees of exposure as test

cases are eliminated from the set, to compare the overlap between Unit

461

www.manaraa.com

Test and Function Test, and to define a criteria for determining when

testing would be complete for their project.

17. Release 2 Content

This case study marks the completion of a series of Requirements

Engineering steps that have taken place in each team since the beginning

of the semester; all teams have become "users" of all other teams' Release

1 components. Each team has collected requirements for Release 2 from

their users and a set of requirements has been selected for implementation

based upon trade-offs between user needs, resource and time available for

the semester. Each team presents their planned content for Release 2 and

rationale for the selection to the users (the class).

18. User Documentation

Teams are required to begin developing user documentation as soon as

requirements and high-level design activities are complete for Release 2.

This is to maintain focus on the user's view during the design stages of

the product.

19. Metrics

Each team is asked to compile various complexity and quality metrics on

their project in Release 2. They are then asked to make recommendations

based on these assessments. The teams present their findings.

20. Error Cause Analysis (Or to ERR is Human, to PREVENT is Divine)

The teams are asked to assess ten errors they have found during testing

this semester, to determine the primary cause of each error, and to verify

the cause with the team that made the error in the environment under which

the product was developed during Release 1. Each team presents their

findings to the class.

462

www.manaraa.com

21. Quality Trade-offs

A simple cost/value model is used to illustrate relationships between

investing in better development, better testing, or better service to

achieve a specified defect level when "old code" is being enhanced and

shipped.

22. Process Control through Data (or One and One Make Two)

The students are given a real life product situation with process data

over three releases of a product. The students must make a recommendation

for the third release which is in progress in this case study. Should the

project plan be changed? Why? How?

23. Process Evaluation

A technique is employed for gathering information about their own process

during the semester, deriving quantitative scores for process

effectiveness based on evaluation of the information, and identifying

areas for improvement in their own process.

24. Project Post Mortem

This case study represents the culmination of experiences during the

Second Semester, both in quantitative and subjective terms. In addition

to the process parameters used in the First Semester Post Mortem, this

case study includes results of analyzing the information on process

effectiveness gathered from the previous case study.

x. GRADING CRITERIA

Since we had decided to break the class into teams, we recognized that grading

an individual becomes more difficult. We could have defaulted to grading each

463

www.manaraa.com

individual based on the team evaluation, but decided that this method had some

inequities. On a team of four students, if one student does not contribute

equally, or in fact contributed significantly less than the others, then one

of two undesirable situations can exist. Either the individual drags down the

team more, or the individual gets a free ride. Neither of these were

acceptable to us. We recognized that these would be isolated cases, but

decided that the problem itself and not the degree of the problem had to be

addressed.

We elected, therefore, to combine a mixture of grading criteria. A mid-term

examination would be given and would account for 30 percent of the grade.

Case studies and the project in conjunction with the project notebook would

each account for 30 percent, and class participation would be considered the

final 10 percent.

Thus, the individual in this scenario is in direct control of 40 percent of

his grade,while the team effort accounted for 60 percent. Within the team

assignment on case studies and the project, we asked that each work item be

accounted for by both individual and team effort. This enabled us to discern

which students were contributing equally to the team effort. In the cases

where an individual was either driving the team or was dragging behind, we

would account for the difference in a weighted team score by individual

student.

In only two instances, over three years, have individual team members come to

us to suggest that another team member was dragging their team down. These

are difficult situations and in some sense these teams work in an artificial

environment, as the team is together for only 15 weeks. This is hardly enough

time for a team to become fully integrated working together towards a

successful project completion. The two incidents, while of real importance to

us, stand counterpoised by all the other teams which did function together

464

www.manaraa.com

under very trying circumstances. In net the team approach can have some

problems at times with individual grading. When stressed with high volumes of

work, teamwork can break down, but in the overwhelming number of cases we have

experi~nced teams working together well for graduate level projects.

In our first two semesters, we gave final examinations as well as mid-terms.

We have since dropped the finals as they seemed to make little difference in

grade scores, and only caused the students to go to a higher level of stress

at the end of the course with studies, which, in turn, tended to diminish the

completion of their projects.

We fully believe that having the students complete the project offers more

value than a final exam. This value is particularly keen when the students

early in the semester express clear doubts about being able to finish the

project as well as they would like.

XI. TEXTS USED OVER TIME

We used the following texts, in successive semesters, as the course evolved:

1. M. L. Shooman, Software Engineering, McGraw Hill (1983). [5]

2. R. W. Jensen and C. C. Tonies, Software Engineering, Prentice Hall (1979).
[6]

3. M. W. Evans, P. Piazza, and J. B. Do1kas, Principles of Productive
Software Hanagement, Wiley (1983). [7]

4. R. S. Pressman, Software Engineering: A Practitioner's Approach,
McGraw-Hill (1982). [8]

These are just a few of the text books covering "Software Engineering." Of

the ones we used, each focused on a few Software Engineering aspects, but no

single text covered the subject entirely to our needs. Consequently, the

formal texts were supplemented with the additional publications:

1. Classics in Software Engineering, Yourdon Press. [9]

2. Selected Reprints In Software, IEEE Press. [10]

465

www.manaraa.com

3. T. S. Chow, Tutorial: Software Quality Assurance: A Practical Approach,
[11]

4. E. Miller and W. E. Howden, Tutorial: Software Testing And Validation
Techniques [12]

A number of additional suggested readings were also included during the

course.

Student Criticisms Of Current Texts

Periodically, the students were asked for feedback on the applicability and

effectiveness of the reading assignments to the current lecture and project

work. More formal feedback on the text and supplemental publications was also

obtained by means of a course evaluation questionnaire

The critiques received on the various text books identified two basic

problems: one or two of the text books focused too narrowly on only a few

aspects of Software Engineering (for example on software reliability

assurance, or on project management), while one or two others covered the

Software Engineering spectrum quite well, but remained a little too

theoretical or abstract for the student to relate to the pragmatics of the

class project, and in many cases, actual work experiences.

Deciding To Write Our Own Text:

As stated earlier, one of our principle objectives is to evolve this Software

Engineering course into a model for both industry and academia. Essential to

achieving this goal is to package the information such that it can be

systematically presented and applied by current practitioners in industry, as

well as taught effectively in an academic environment by others.

A series of text books is planned as a partial answer to this goal. The first

is currently under development for publication by Prentice-Hall in 1987. It

covers topics of the first semester under the title "Software Engineering: An

466

www.manaraa.com

Industrial Approach, Volume 1." To assist those who will teach it as a formal

graduate level course, publication of a supplemental teaching guide and a book

of case studies used in the course is also being considered.

XII. SUPPORT ENVIRONMENT:

The support environment at our university relevant to these projects consists

of an IBM 3081 running an operating system called "Michigan Terminal System,"

SUN terminals for graphics, and an array of personal computers. The host

system is used by most of the students for project documentation and

communication. Some students who are employed ful1 time in jobs campus use

their the local facilities for this work. Most coding is done in PASCAL, and

in recent semesters, implementation and testing has migrated almost

exclusively to the personal computer, the most popular combination being Turbo

PASCAL on the IBM PC.

XIII. TEACHER-STUDENT RELATIONSHIP

The fact that the two of us and many of the students in the course are

employed full time, and at distant locations, presents a unique chal1enge;

especially in a course such as ours where project work makes continual

student-teacher feedback essential. As mentioned previously, class sessions

are held one night per week for three hours. Time is allocated at the

beginning of each session to survey the teams for general problems and

inhibitors to their project work. Problems unique to a given team are handled

either by team consultations with the us after class, or by making an

appointment for a consulting session before class on the following week. Such

consulting sessions usually take one-half to one hour. Students are

encouraged to contact us by telephone during the week also, which they often

do. And finally, feedback is facilitated by requiring that each Case Study

result be handed in, usually at the class session for the following week. This

enables us to annotate comments and return them to the teams the following

week.

467

www.manaraa.com

To ensure maximum continuity between teacher and student, we have since the

outset placed a requirement on ourselves to both attend all class sessions, at

least to the extent that our individual business travel schedules permit, and

to require that the Teaching Assistant eTA) attend all lectures in their

entirety as well. The reason for this is to remain as involved with the

students as possible under these circumstances. Since one of our goals is to

become equally proficient in presenting each other's lectures, it provides an

opportunity to learn each other's material. It also provides us with many

chances to critique each other's presentation skills and subject matter, thus

increasing the rate at which we have been able to polish and fine-tune the

course.

Even with all the above precautions, practices and steps, problems have still

arisen in staying on top of all student project work and problems all the

time. This was particularly brought to the foreground during the Fall 1984

semester when over 60 students enrolled, 57 of whom stayed through to

completion of the semester. The sheer volume of work items requiring our

critique, the evaluation and grading of finished work and examinations, and of

the needed team consultations was overwhelming and detracted severely from our

ability to perfect the approach we were evolving and still deliver top quality

education. For this reason, we set a limit of 30 students for future classes.

XIV. STUDENT FEEDBACK

Feedback on student opinion about the course is obtained at the end of each

semester by means of both a formal survey administered by the university, and

a less formal survey specific to this course, which we administered.

468

www.manaraa.com

Formal University Survey:

The university survey uses a series of questions stated as a positive

characteristic of the course, and the student is asked to record whether he or

she "strongly agrees" with the statement, "agrees," "disagrees," or "strongly

disagrees."

The survey statements are:

1. The course objectives have been clearly stated.

2. There is consistency between the objectives and what is being taught.

3. The reading assignments have aided the learning process.

4. The writing assignments have aided the learning process.

S. The level of difficulty is reasonable.

6. The amount of work required is reasonable.

7. The pace at which material is covered is reasonable.

8. The grading criteria have been clearly stated.

9. The tests and quizzes, etc. are fair.

10. The test, quizzes, etc. , are useful learning experiences.

11. The course format is appropriate to the subject matter.

12. The course has logical organization and continuity.

13. The course encourages students to think for themselves.

14. The course has significantly increased your knowledge and skills in the
subject area.

15. The subject matter is relevant to your education goals.

Student responses have been overwhelmingly favorable in most of the above

categories over the semesters, except in the areas of reading assignments

(Question 3), the amount of work (Question 6), clarity of grading criteria

(Question 8), and the degree to which tests aid learning (Question 10).

A question is also included that asks the student to record on a scale of 4 to

0, whether he or she rates the overall course as "one of the best," "above

average," "average," "below average," or "one of the worst." On a scale of 4

469

www.manaraa.com

to 0, with 4 being the highest, the overall scores for the succession of

semesters is:

• Software Engineering II, Spring 1984--3.13

• Software Engineering I, Fall 1984--2.07*

• Software Engineering II, Spring 1985--3.50

• Software Engineering I, Fall 1985--2.75

• Software Engineering II, Spring 1986--3.85

• Software Engineering I, Fall 1986--Not available at this this writing

*This was the class with 57 students.

Our Own Survey

An additional survey specific to the course is also administered at mid-term

and at the end of each semester. The survey asks for an evaluation of each

lecture module and each case study as to whether the topic or case study

should receive more emphasis, receive less emphasis, be kept the same, or be

dropped from the course. This has provided valuable feedback making it

possible to "fine tune" the course much more rapidly.

In addition, the survey asks for opinions on other aspects of the course.

Consistently given a high rating by the students each semester has been:

The challenge of the course

The extent to which the course has aided the students' learning process

• The extent to which the course has encouraged the students to think for
themselves

Feedback from the last two semesters also indicates high ratings on course

organization.

Frequently rated low or of concern, and therefore areas in which continual

improvement has been sought, are:

470

www.manaraa.com

• The amount of workload in the course

The difficulty of examinations and limited value as an aid to learning

The value of the text books and reading assignments relative to this
course

An additional question is included in the survey that asks to what extent

prior courses in this discipline have prepared the student for this course. Of

concern is that in each semester the majority of answers have consistently

been "could have done much more." Examples are lack of prior knowledge of

basic Structured Programming constructs, of the use of modern design notations

such as pseudocode, familiarity with data abstraction as a fundamental design

technique, and knowledge of program specification techniques and formatted

specification languages.

Write-in comments are also welcomed in the survey. Some excerpts that

characterize the feedback from the most recent semester are:

"The course is excellent! The workload is unbelievable!,"

• "The workload was far too much ,"

"This course has easily been the best taught, most interesting of any I've
taken in my seven years at RPI.,"

"Perhaps a more scaled-down project could achieve the same result with
less time required.,"

"This course should only be considered by students seriously interested in
Software Engineering methodologies and practices. P.S. to the interested
student, this course is invaluable and beyond compare."

XV. WHAT WE LEARNED OVER THE SEMESTERS

Overall, we have learned that this type of teaching approach has proved to be

of immense value in the eyes of most students who have taken it. We have also

learned that to successfully apply this type of project-oriented approach, the

maximum manageable size of the class is only about 30 students.

471

www.manaraa.com

From a professional education standpoint, we have been careful not to turn the

course project into a "how to" course rather than as a vehicle to challenge

original thinking so needed in the profession.

According to repeated feedback from students, a key ingredient in the success

of this approach seems to be the teaching a variety of Software Engineering

approaches, and in involving the student in a life-like set of "situations"

for which a number of possible Software Engineering alternatives seem equally

viable at first, and from which they must choose the better approach based

upon a disciplined problem solving technique.

XVI. CONCLUSIONS

We have tried to bring an industry perspective into an academic graduate

two-semester course sequence in Software Engineering. We believe we have

successfully accomplished this meeting of industry in academia. We have been

working to improve our approach for two and half years. We hope that we will

get feedback from our peers across the worldwide area of Software Engineering

education that will help to improve the course even further. We believe we

are achieving the objectives set forth initially, and that the students are

receiving something valuable relative to actual industrial requirements for

Software Engineering professionals, and that this approach is different from

what they have been offered heretofore by more typical current-day courses.

We anticipate that the Software Engineering Process Principles which serve as

the foundation of our approach in teaching this course, as well as our work in

industry, will remain with each student we have had in our classes. We hope

that what we have set out to accomplish, what we have experienced, and what we

have documented can indeed serve as a model for other Software Engineering

course sequences.

472

www.manaraa.com

XVII. ACKNOWLEDGEMENTS

We wish to thank RPI for giving us the opportunity to teach at their Institute

and for allowing us the leeway to shape this course sequence as we felt it

should be. We wish to thank IBM for supporting our efforts at RPI. for

occasionally we did have to juggle priorities.

473

www.manaraa.com

REFERENCES

[1] Berzins, Gray, and
Naumann, "Abstraction Based
Software Development," CACM,
Volume 29, Number 5, May 1986,
p. 402.

[2] Hartog, Curt, "Of Commerce
and Academia," DATAMATION,
September 1985, p. 68.

[3] Radice, Roth, O'Hara, and
Ciarfe11a, "A Programming
Process Architecture," IBM
Systems Journal, Vol. 24, No.
2, 1985, p. 79.

[4] Humphrey, W .S., "The IBM
Large-Systems Software
Development Process:
Objectives and Direction," IBM
Systems Journal, Vol. 24, No.
2, 1985, p. 76.

[5] M. L. Shooman, "Software
Engineering," McGraw Hi11
(1983) .

[6] R. W. Jensen and C. C.
Tonies, "Software

474

Engineering," Prentice Hall
(1979) .

[7] M. W. Evans,
and J. B. Dolkas,
Of Productive
Management," Wiley

P. Piazza,
"Principles

Software
(1983)

[8] R. S. Pressman, "Software
Engineering: A Practitioner's
Approach," McGraw-Hi11 (1982).

[9] "Classics In Software
Engineering," Yourdon Press
(1983).

[10] "Selected Reprints In
Software, Second Edition,"
IEEE Computer Society Press
(1984) .

[11] T. S. Chow, "Tutorial:
Software Quality Assurance: A
Practical Approach," IEEE
Computer Society Press,
(January 1985).

[12] E. Mi11er and W. E.
Howden, "Tutorial: Software
Testing And Validation
Techniques (2nd Edition),"
IEEE Computer Society Press,
(November, 1981).

www.manaraa.com

The Computer Science Education Program at AT&T Bell
Laboratories, Merrimack Valley

J. C. Cleaveland
R. W. MacDonald

AT&T Bell Laboratories

ABSTRACT

A Computer Science Education Program was designed to produce
software engineers at AT&T Bell Laboratories, Merrimack Valley.
This provided an opportunity to those who wanted to change
careers or become more formally trained in software engineering
and computer science. The program help ease the technology shift
towards software and provided AT&T with skilled software
engineers who were already familiar with the transmission system
products. There was a deliberate tailoring of the program to meet
the needs of this AT&T location. The paper provides an overview
of the design, development, and results of the program, including
the curriculum, administration, costs, and rewards.

1. Introduction

Over the last few years, AT&T Bell Laboratories at Merrimack Valley has been

experiencing a sizable growth in software development activity. The Merrimack

Valley Laboratories designs and develops digital terminals and systems for voice

and data transmission, microwave radio systems, guided digital transmission

systems, and provides computer-aided design of systems, circuits, and

components. With the availability of powerful yet inexpensive microprocessors

the use of software for systems control and operations became widespread. In

the last 5 years, Merrimack Valley has experienced more than a 10 fold increase

in the number of software developers who are actively developing, or supporting

the development of, software primarily for embedded microprocessors.

When referring to this "growth," one is actually noting the shift in technologies

that are required to implement the products under development. Such shifts in

technology need to be accompanied by shifts in the technical skill mix of

development and support staff. In 1983 management concluded that Merrimack

Valley would require many more software engineers based upon the projected

www.manaraa.com

growth in software needs. We realized that no single solution would provide all

the required software expertise. We expected that a large number of people

would obtain software education outside the company in formal programs, and

we expected to hire some software engineers. We also felt that special

educational opportunities in software would be required at Merrimack Valley to

supplement the individual courses then available. A software education task

force was formed to propose curricula and methods of implementation to help

individuals develop their software backgrounds. Much of the current software

development activity was being carried out by staff members who were

previously engaged in other areas of engineering, such as mechanical and

electrical engineering. It was for these individuals, and the additional engineers

who should be developing expertise in software, that the Computer Science

Education Program was developed.

The program was designed during the Summer of 1983, and approved in Fall

1983. During the Spring of 198-1, "ramp-up" courses were provided for those

who wished to take the program but did not meet prerequisites. The. program

started with 32 people in Fall 198-1 and finished with 20 in May 1986.

A number of significant advantages of having an in-house program were

realized. These advantages included many of those previously reported[li.

These included:

1. The students were mature, motivated, and experienced. They had been

with the company for an average of ten years prior to joining the program.

Students were motivated by a desire to learn, not grades.

2. The courses were slanted directly towards our specific needs. All courses

used the C and UNIX1 computing environment. After covering the basics

476

www.manaraa.com

such as good programming practices, data structures, discrete

mathematics, the program emphasized software engineering and operating

systems concepts, the two most important ingredients in many of our

software development projects.

3. Many courses could be taught by experienced in-house instructors. These

instructors could make the course material more appealing by relating it

to specific work in Bell Laboratories. Specific Bell Labs tools, techniques,

and methods could be naturally incorporated into the courses. Project

work was coordinated acrosss several courses which provided an

opportunity to experience the practice of software engineering that

paralleled software project work on transmission products.

4. The students have become more valuable employees, because they now

have software skills and unlike newly hired software engineers, they have

considerable experience and detailed knowledge of our products.

5. An in-house program was convenient to many students. Students could

take a complete education program without having to go to a college or

university, attend classes that may require commuting time, work on

foreign comp uter environments, and become entangled in considerab Ie

amount of red tape. No degree was awarded, but almost all of our

students already had a Master's degree, and a second one was not a high

priority.

2. Process

A task force of eight interested MTS (Member of Technical Staff) and technical

supervisors were formed to evaluate possible education directions and draft a

1. UNIX i. a trademark of AT&T Bell Laboratories.

477

www.manaraa.com

proposal for meeting the identified needs. This Software/Firmware Education

Task Force included the authors of this paper. To start the process, the task

force reviewed the prior software engineeririg and computer science offerings at

Merrimack Valley (locally taught courses, corporate offerings, university

videotape, etc.). Also reviewed were the recommended curricula of the IEEE [21,

[31, (41, [51, (61, (71, and the ACM (81, [91, [101, [111. By surveying recently graduated

technical employees, the task force developed a composite view of the typical

programming backgrounds of non-computer scientists. The efforts of other

AT&T Bell Laboratories locations, notably Whippany[121 and Columbus[131, were

studied. Over a period of six months, the committee arrived at a consensus

view of our target population, objectives, curriculum, format of presentation,

and recommendations.

3. Committee Report

Mter considering the various alternatives, the committee recommended that a

serious education program be offered over two years to about twenty-five MTS

starting in September, 1984. The details of this program are given in section 5

of this paper. The goal of this effort was:

to produce software developers, operating at the MTS level, who can
engineer, design and develop the software and firmware components of future
Transmission Products.

In more detail, individuals who successfully complete this education sequence

should (Paraphrased from [81, page 149):

1. be able to design and code software in a reasonable amount of time that

works correctly, is well documented, and is readable;

2. be able to determine whether or not they have produced a reasonably

efficient and well organized software product;

3. know what general types of problems are amenable to computer solution

478

www.manaraa.com

and the various tools necessary for solving such problems;

4. be able to assess the implications of work performed either as an

individual or as a member of a team;

5. understand computer architecture and operating system concepts; and

6. be prepared to pursue in-depth development in one or more application

areas and further education in software engineering and computer science.

Meeting this goal, with a carefully managed impact on the participants' personal

lives and work in progress, were the criteria for success for this education

program.

4. Target Population

There was a large diversity of needs in software education at Merrimack Valley.

Similarly, there was a large number of possible vehicles for addressing these

needs. The Software/Firmware Education Task Force decided to limit its scope

to MTS level software engineering and computer science skills. In general, we

chose not to address the software education needs of our associate technical

populations through this program. Nor did we cover the development of

software project management skills for our management population2•

The profile of a typical participant was an experienced MTS with a Master's

Degree or Doctorate in a technical area other than Computer Science (or the

equivalent in experience). He or she would have worked in other engineering

disciplines, and had been assuming, or would be assuming, assignments in

software or firmware development. They had already met the prerequisites for

2. This is not to say that managers who wanted to learn software engineering and computer science were excluded from
the program. The skills needed to manage software projects had to be dev.loped outside this program. See also [11[.

479

www.manaraa.com

the program or they were readily able to master them during the rampup period

that preceeded the formal course sequence.

Most of our staff of software developers matched this description in 1983. They

were talented individuals with a history of success in other engineering

disciplines who were then involved in some aspect of software development for

embedded microprocessors. Out of necessity, many had already begun

developing software without a knowledge of the foundations of software

engineering or computer science. Formal training was generally limited to one

to three programming courses in the use of UNIX and programming in C. A

well designed program was needed to provide these people with the knowledge

to correct any mismatch between their existing skills and experience, and their

future assignments.

5. Computer Science Education Program

The computer science education program was a two year program with two

semesters per year and two courses per semester. It was aimed at the MTS

population wishing to migrate to software engineering or computer engineering.

This serious, in-house, non-degree program operated at near a graduate level

pace and produced quality software engineering and computer science expertise.

5.1 Admittance to the program

As noted above, the program was developed primarily for the AT&T Bell

Laboratories Merrimack Valley MTS population who were interested in shifting

from other technical disciplines towards software engineering and computer

science. Exceptions were made for non-MTS employees. Admittance depended

on satisfying the prerequisites and the approval of management. A simple

application form was used to determine whether the prerequisites were met. All

32 applicants who met these requirements were admitted to the program. This

480

www.manaraa.com

was seven more than we had planned, but as we expected, attrition eventually

lowered the number. Twenty-two students started the second semester; of

these, all but two completed the program.

The prerequisites were satisfied by the students by taking preliminary courses

or by having equivalent knowledge and experience. The prerequisites were:

1. C and UNIX experience. Some knowledge of and experience with the

UNIX operating system and the C programming language was required.

This could be satisfied by courses as long as they were accompanied or

followed by work on a non-trivial software project.

2. Computer organization. Knowledge of the basic concepts of assembly

language, machine language, stored programs, memory, number and

character representation, interrupts and input/output, basics of Boolean

logic was required.

3. Mathematics background. Some knowledge and experience in

mathematics equivalent to that learned in calculus, linear algebra and

probability. It was familiarity with mathematical methods and logic that

was important rather than specific knowledge in a mathematical area.

This prerequisite was already met by most MTS.

The Spring before the program began we offered a ramp-up course that covered

the material of the first two prerequisites. Eight of the 20 graduates took this

ramp-up course.

We wanted all students in the program to take all the courses, so we did not

offer any advance placement; however, we did make an exception that gave two

students permission to skip a course. In other cases, we encouraged the

stronger students to become graders.

481

www.manaraa.com

5.2 The Curriculum

The curriculum was carefully chosen based on the expected software needs of

AT&T Bell Laboratories Merrimack Valley. The prerequisites assured a uniform

starting place for serious study and work in software engineering. For each 15

week course the student was expected to spend the following amount of effort

and time (per week per course):

1. 3 hours class time (during working hours)

2. 3 hours of class work (during working hours)

3. 3 hours of class work (at home)

This means the student was expected to add one hour of personal time for every

two hours of education at work. Because two classes were offered at a time, the

student was expected to spend 12 out of 40 work hours on the program, and an

additional 6 hours a week at home. Since there were 4 semesters of 15 weeks a

piece, each student was expected to spend about 720 work hours spread over

two years. Combined with the 360 hours at home, means that each student was

expected to devote 1080 hours to the education program. In reality students

spent more than the allocated time on education at home, and less at work. We

attribute this primarily to two reasons:

1. Students were still highly motivated to make significant contributions to

their real work.

2. Homework assignments sometimes took longer than instructors

anticipated.

The chosen curriculum was an accelerated version of the undergraduate

curriculum sanctioned by the Association of Computing Machinery[8]. The

chosen curriculum can also be viewed as an introductory graduate curriculum in

482

www.manaraa.com

computer science. It was tailored to meet the anticipated software engineering

needs at Merrimack Valley. This tailoring primarily involved an emphasis on

software, software engineering, large software projects for embedded

microprocessors, operating systems, and systems programming.

The curriculum also emphasized project work. This implied a fair amount of

work outside the classroom requiring computing facilities. The curriculum was

also designed to accommodate one and two year plans. People finishing one

year would have the background for programming, and those finishing two years

would have a good background in software engineering. As expected almost all

students took the program for two years; two students stopped at the end of

one year.

A detailed description of the curriculum is given in appendix A. The course

titles were:

First Year - First Semester
1. Accelerated Discrete Mathematics and Formal Methods in Computer Science
2. Programming Discipline

First Year - Second Semester
3. Computer Architectures
4. Data Structures, Algorithms and Abstractions

Second Year - First Semester
5. Operating Systems
6. Software Engineerin~

Second Year - Second Semester
7a. Grammars, Languages, and Translation
7b. Database Systems
8a. Expert System Technology
8b. Design of Software Tools and Programming Environments
Sc. Compiler Construction Techniques
8d. Independent Study

Each course in the last semester lasted seven weeks, and the student could

choose any two of the courses 8a-d. Two students chose 8d (Computer Graphics

and Computer Science Theory). Originally, we had combined courses 3 and 5

into a two course sequence in computer architectures and operating systems.

483

www.manaraa.com

We found that no outside instructors were willing to commit to a course that far

in advance. There were also few instructors that were willing to teach such a

combination. We therefore changed the curriculum to have separate courses.

Unlike a university environment wherein courses are continually being offered to

students with unknown backgrounds, this program offered the opportunity for a

more closely coordinated curriculum. Material offered during later courses

could truly build upon the work of previous semesters. Since the same set of

students took each class, the instructors knew what was previously taught.

This program thus offered the unusual opportunity for a well planned and

coordinated set of classes that could be more meaningful than the equivalent set

of classes at the university. For example, as mentioned earlier, the software

engineering course (6) and the operating systems course (5) shared the same

class project. The project was to build an operating system, based on XINU[15!.

Operating system principles, project requirements, architecture and design were

handled by the operating systems class. Project management, software

engineering principles, software tools and environment were handled by the

software engineering class. Such a project was much more substantial than any

single class could have offered. The software engineering class had a non-trivial

project to manage, and the operating systems class could devote time to

technical details rather than project details.

0.3 Other Students

In addition to CSEP students, we felt there would be persons who would like to

take one or two specific courses. We had to decide whether to allow non-CSEP

employees to take single courses from the program. We were concerned that

many non-CSEP students might negativly alter the class atmosphere. Non

CSEP students would not have the same release time, and they might not have

had the same background such as the previous CSEP courses. Although

484

www.manaraa.com

controversial, we finally decided to open up the CSEP courses to the general

population. We had contingency plans if too many people signed up, such as

offering a parallel course, or videotaping. On average we had about 5-10 non

CSEP people in each course, which was acceptable after the first semester.

6. Administering the Program

The program was administered in-house by Bell Labs, and about half the classes

were taught by Bell Labs personnel. The various roles and their responsibilities

were:

Students

learned and worked with other students and instructors.

Instructors

taught, assigned and administered class work, co-ordinate with other

classes.

Graders

A.ngels

graded homework and helped students. In many cases, stronger students

volunteered to become graders.

helped both the instructor and students. Angels made sure the course

ran smoothly and acted as a buffer between students and instructors.

Angels are particularly important for outside instructors, but were also

useful for in-house instructors. The course angel worked with both

students and instructors when course workloads were felt to be excessive.

The curriculum coordinator

obtained instructors for courses, aided the instructor in textbook

selection, course content, and coordination with other courses and

instructors, computing facilities, and software; the curriculum

485

www.manaraa.com

coordinator also had overall responsibility ror curriculum implementation.

The program coordinator

was responsible ror admittance procedures, withdrawals, rooms, taping of

lectures, textbook ordering, and aided the curriculum coordinator and

instructors.

The education committee

was active in the implementation of the program and during the first

year or operation. It defined the program goals, procedures, and obtained

management support ror the program.

Initially we had thought we would videotape all lectures, but we changed our

policy to videotape only upon request. If students anticipated missing class, a

request to videotape the class could be made.

Regular in-depth feedback on each class was important to keep the program on

track. About a third of the way through each semester, a detailed survey was

given in each class so that adjustments in teaching style, content, or pace could

be made. During the first semester it was important to keep weekly track of

the time students spent on class work, so that adjustments to homework or the

pace of the class could be made to meet our target of 6 hours of class work per

week per class. It was important that the right pace be established early so that

we would not lose students early in the program due to unreasonable homework

demands. Also an electronic newsletter was established to provide timely

communication among all CSEP participants.

We developed grading guidelines that we distributed to students and

instructors. Portions of the original guidelines were changed as circumstances

became clearer. We allowed numeric or letter grading on individual

assignments, but the course grade could either be complete or incomplete.

486

www.manaraa.com

Incompletes were not recorded. We found however that giving grades on

individual assignments increased the stress factor for some students so we

eventually corrected homework and gave very few scores. In many classes, end

of the semester self-assessment exams were given. The course guidelines

contained the following information:

1. Reading, study, homework, exams and projects should average about six

hours of work outside of class per week.

2. Homework, exams and projects should be turned in to the instructor on

time either on paper or by electronic mail.

3. It is preferable to have homework and exams returned as soon as possible

to students. The instructor (or grader) should grade all work within two

weeks of the due date and returned to students.

4. Since the first priority of this program is learning, students are encouraged

to help each other and work together. Unless explicitly stated by the

instructor all students may obtain help from fellow students on all

homework and projects.

5. Individual student grades are considered private information and may' not

be communicated beyond the grader, instructor and student without the

student's permission. Class curves and grade summaries may be public if

individual grades cannot be identified.

6. At the end of each class, the instructor must make a list of students that

completed the course and send this list to the program coordinator. There

are two potential reasons for not completing a course: 1) not enough work

turned in for grading (minimal amount is to be determined by the

instructor), 2) work turned in is not up to the minimum standards (also

determined by the instructor). Instructors have the responsibility of

487

www.manaraa.com

informing students that they are not performing up to standards.

7. Completion of the computer science program is defined as completing at

least seven of the eight courses.

This may seem like a very lax method of giving an educational program. There

was little to show on paper how well students were doing, and little incentive or

reward for doing well. This did not turn out to be a problem for us because the

students in the program were motivated. They identified themselves rather

than being chosen, and they were eager to learn their newly chosen field. For

many the program represented a career change. In the long run performance

reviews depend indirectly on how well they learned and can apply course

material and concepts.

7. Rewards

Beyond the intrinsic reward of increased knowledge, we felt that active,

enthusiastic management support of the program, and of the participants,

would be crucial to attracting and retaining students. This support included

recognition that the students, in-house instructors and program administrators

would have less time to dedicate to other work assignments. This was taken

into account during performance review. No direct benefit or loss was

attributed to the student during performance review for participating in the

program, but it was noted that the student was working through a challenging

educational program. It was hoped, of course, that a student's overall

performance will improve by application of the knowledge and experience

gained.

We felt that active and ongoing encouragement of the student's effort by direct

supervision and higher level management was needed. For example, at the end

of the first year, we had a formal luncheon with students and their

488

www.manaraa.com

management. In addition to released time, support took the form of providing

quality computing facilities and laboratory equipment for students to use in

completing their assignments. Terminals at home and dedicated computer

facilities were needed to ease the impact on personal time and provide

additional opportunity for experimentation.

Upon finishing the program students and managers should know that an

education program of significant merit and effort has been completed. A

certificate of completion accompanied by a gift was presented to each

participant by their executive director and noted in the employee's permanent

record. A "graduation luncheon" for all students, their spouses, and directors

was held to celebrate this achievement.

8. Costs

The purpose of this section is to outline the costs associated with offering this

education program. It serves to foster an understanding of the importance that

was placed on preparing our staff for the critical technologies needed in our

product development. The costs of offering corporate education programs are

frequently not noted. The costs associated with education are maintenance

dollars that are spent in caring for and upgrading our investment in our

research and development capability.

The largest cost component of this program was the loaded salaries of the

students. For all of the students that participated in the program, time spent

in class and on homework at work accounted for more than ninety percent of

the program cost. The second largest cost component was the cost for

instructors and curriculum coordinators. Six of the courses were taught by

outside instructors from local universities. There was a variation in the cost of

outside instructors; some of the more expensive instructors were among the best

489

www.manaraa.com

prepared and the highest rated. Compared to the cost of the overall program,

the additional cost for these high quality instructors was insignificant.

Administrative costs in the Education Center, the provision of computing

facilities, materials, textbooks, and supplies, make up the remainder of the

costs. The potential cost figures were modelled before the program was

proposed and approved.

9. Summary

The need for a shift in technical skill mix at AT&T Bell Laboratories Merrimack

Valley was clearly identified by upper management. A one-time mechanism for

accommodating this need was proposed, approved and executed. The vehicle

was a quality in-house program in software engineering and computer science

that spanned two years. The cost of the program, particularly in terms of

loaded salary was identified at the outset. Students were granted release time

but also had to devote a considerable amount of personal time to their

education. This effort was an investment in the futures of the individual

technical contributors and the viability of the product line. The talent at

Merrimack Valley coupled with the unique education possibilities that this

cohesive course sequence offered resulted in an exciting learning atmosphere.

10. Acknowledgements

There were many people who participated in the design and administration of

the program, either as members of the task force, or as members of the

education committee, including Alma Healey (Program coordinator), Tom

Wetmore, Jim Oberst, Bob Snicer, Ken Kretch, Bill Burdette, Kathy Luther,

Steve Collins, and Bob DeMarco. We also thank the reviewers for their time

and effort.

490

www.manaraa.com

REFERENCES

l. James P. McGill, "The Software Engineering Shortage: A Third Choice", IEEE Transactions
on Software Engineering, Vol. SE-lO, No.1, Jan. 1984.

2. W. Fletcher, "The Digital Logic Subject Area," Computer Vol. 10, No. 12, December 1977,
pp.72-74.

3. O. Garcia, "Computer Organization and Architecture and the Laboratory Sequence,"
Computer Vol. 10, No. 12, December 1977, pp. 76-90.

4. D. Rine, D. Pessel and S. Ghosh, "The Software Engineering Subject Area," Computer Vol.
10, No. 12, December 1977, pp. 97-105.

5. B. H. Barnes, et. aI., "Theory in Computer Science and Engineering Curriculum: Why,
What, When and Where," Computer Vol. 10, No. 12, December 1977, pp. 106-108.

6. J. T. Cain, "The Computer Science and Engineering Core Curriculum," Computer Vol. 10,
No. 12, December 1977, pp. 109-113.

7. M. E. Sloan, "Evaluation Model Curriculum in Computer Science and Engineering,"
Computer Vol. 10, No. 12, December 1977, pp. 114-120.

8. R.H.Austing et. aI., "Curriculum '78, Recommendations for the Undergraduate Program in
Computer Science," Communications of the ACM, March 1979, Vol. 22, No.3, pp. 147-166.

9. K.I. Magel, et. aI., "Recommendations for Master's Level Programs in Computer Science,"
Communications of the ACM, Vol. 24, No.3, March 1981.

10. S.N. Busenberg and W.C.Tam, "An Academic Program Providing Realistic Training in
Software Engineering," Communications of the ACM, Vol. 22, No.6, June 1979.

11. G.L.Engel, "A Comparison of the ACMjCCCS and the IEEE/CSE Model Curriculum
Subcommittee Recommendations," Computer Vol. 10, No. 12, December 1977, pp. 121-123.

12. R. Hirderliter and S. D. Shapiro, "A Program of Continuin~ Education in Applied Computer
Science," Computer, Vol. , No. 10, October. 1981.

13. Internal correspondence concerning the Columbus Computer Science Education Series.

14. L.B.Robertson, and G.A.Secor, "Effective Management of Software Development.", AT&T
Technical Journal, Vol. 65, Issue 2, March-April 1986.

15. Douglas Comer, Operating System Design: The XINU Approach, Prentice-Hall, 1984.

491

www.manaraa.com

Appendix A: Course Descriptions

1. Accelerated Discrete Math and Formal Methods in Computer Science

Logic, set theory. Combinatorics, probability. Algebraic structures,
groups, finite fields. Graphs, lattices and Boolean algebra. Introduction
to formal languages and finite state automata. Homework will include
some programming assignments.

2. Programming Discipline

Introduction to the software life cycle with emphasis on unit design,
coding, and testing. Algorithm development. Structured programming,
modularity, stepwise refinement. Top-down and bottom-up design.
Information hiding. Coding style and documentation. Design for
maintenance and portability. Introduction to basic programming language
structures and languages other than C. Homework will include extensive
programming assignments.

3. Computer Architecture

Processor ar~hitecture, instruction sets, addressing modes,
microprogrammmg, virtual machines. Memory organization and
management, addressing, swapping, virtual memory, hierarchy of storage
media. Protection features, pipelining, distributed systems, advanced
computer architectures, novel computer architectures.

4. Data Structures, Algorithms, and Abstractions

Design and analysis of algorithms and data structures. Arrays, stacks,
queues, lists, trees, graphs, etc. Sorting and searching. File organization.
Dynamic storage allocation. Recursion, data abstraction and procedural
abstraction. Homework will include extensive programming assignments.

5. Operating Systems

Process control, concurrent processes, resource sharing, interp rocess
communication. Scheduling, load control, thrashing. Input/output
processing, buffers, controllers, device drivers, interrupt structures,
memory management, and file systems. Homework will include a large
programming project.

6. Software Engineering

In depth study of the software life cycle. Methodologies, reviews, software
metrics, quality assurance. Documentation. Introduction to project
planning, organization, and management. Homework assignments will be
coordinated with the programming project in course 5.

7. Topics in Computer Science I

7 A) Grammars, Languages, and Translation

This course provides an introduction to grammars, languages, and
translation. Both regular expressions and context-free grammars, and the
languages that they describe, will be covered. Grammar-based recognition
and parsing of strings from regular and context-free languages will be
included. Syntax-directed translation will be introduced. Interesting class

492

www.manaraa.com

projects will be assigned which use the YACC(l) and LEX(l) tools (no
prior knowledge of tools required).

78) Database Systems

This course covers database system facilities; the relational data model;
query languages; QUEL, relational algebra, and host language embeddings;
data independence; views, integrity and authorization; logical database
design; the network and hierarchical data models; database system
implementation; access methods, query optimization, distributed database
systems.

8. Topics in Computer Science II (Choose any two of the following)

8A) Expert System Techonology

This course introduces the basic concepts of expert system technology,
focusing on logic programming. Topics to be discussed include search,
representation and use of knowledge, approaches to designing expert
systems, existing successful expert system applications, and a methodology
for applying software engineering techniques to the production of expert
systems. Two representation and programming models, rule-based
erogramming (OPS5, Prolog, OPS83) and object-based programming
{FLAVORS, SMALL TALK, Objective-C}, will be presented. Knowledge of
engineering skills will be discussed and compared with traditional systems
analysis and design. In particular, techniques for choosing experts,
determining the appropriate role for experts and interviewing experts are
included.

88} Design of Software Tools and Programming Environments

A project-oriented course in the design and development of software tools
and programming environments. Class topics will include integrated tool
sets, application generators, human factors, and a review of current tools
and their faults. Each person or group of people will select a course
project and make in-class presentations of their problem, solution, and
tool design and development.

8C} Compiler Construction Techniques

This course will introduce the student to the techniques used in building
compilers for high level languaegs, such as C, PASCAL and Ada. Topics
will include: organization and management of symbol tables, type
checking, intermediate language design, code generation and run time
support environment. The emphasis is on pragmatic issues and examples
will be chosen from working compilers. The student is assumed to be
familiar with parsing techniques.

8D} Independent Study

Arranged with a mentor of your choice.

493

www.manaraa.com

FORMAL EDUCATION WITllN
THE SOFTWARE LIFE CYCLE

Dr. Nancy Hall, IBM Federal Systems Division

John Miklos, IBM Federal Systems Division

ABSTRACT

Approximately ten years ago, the Federal Systems Division of IBM initiated
a software engineering program to train all software professions in current
topics being taught in the leading universities. Thus began an extensive
program that is still in operation today. Initial results demonstrated that the
quality and reliability of the FSD software product was greatly enhanced.
This paper describes the education program and documents some of the initial
results that indicate the success of the education program.

1. Introduction

The Federal Systems Division (FSD) of IBM has supported the federal government on

key contracts for over 25 years. These projects can be characterized as being long term,

large scale contracts consisting of significant hardware and software development and

integration. In the mid-70's these projects provided IBM FSD with the opportunity to

create large scale systems that were not being done anywhere else in the corporation.

The division had thereby gained a large amount of experience in this area while future

work was increasing in size and complexity. This trend indicated that traditional

software development approaches needed to be refined and understood by all

professionals in order for the division to remain successful.

To solve this problem FSD recognized the need to put more rigor into the software

development process. Some leading software professionals, notably Harlan Mills,

www.manaraa.com

recognized the division had a significant population of programmers with a great deal of

practical experience but were unaware of new software engineering concepts being

taught in the leading universities. Mills recommended initiating a software engineering

program that would train all professionals in FSD in these ideas; thus began an

extensive program that is still in operation today.

This paper provides an overview of the FSD education program and the software

development methodology, particularly the basic concepts that are central to the

division's education program. Historically, it will describe the initial FSD education

program and how it has been extended to include all aspects of software development

including management and testing concerns. A major focus for all classes is the FSD

life cycle for a software project; this paper defines that life cycle and the relationship

between those activities and each class. In addition, it will describe a new emphasis in

FSD on the Ada language and how this new programming environment will impact

future FSD projects. This paper will also explain a seminar program conducted by

education that continues to focus on software methodologies and extend the lessons in

the classes to the practical arena

2. Phase I Class Offerings

The education program was organized around two major concepts. First, there was a

well known base of technical material that the FSD population needed to understand.

Secondly, and perhaps more importantly, the division had a number of "experts" in

developing large software systems whose expertise could help future projects. Therefore,

the solution was to attack the problem in two ways:

1. Create a set of standards and practices that would be a base for all future
projects. This was accomplished by having the FSD "experts" Document
their approach to developing large software systems in a manual called the
"FSD Standards and Practices" (Figure 1).

2. Create a set of classes to teach the new software concepts and organize them
around the Standard and Practices. In doing this the classes could

495

www.manaraa.com

emphasize the technical material and give practical help in running new
projects. The classes that were taught through 1984 included:

a. Systematic Programming Workshop (SPW) which was the basic class
that alI FSD programmers attended. This class discussed basic
concepts such as stepwise refinement, control structures, verification
techniques, and abstractions. The class designed individual procedures
using the model of a mathematical function.

b. Systematic Design Workshop (SDW) which extended the ideas of SPW
by defining a state machine model for data abstractions and using it to
present design, refinement, and verification methods.

c. Advanced Design Workshop (ADW) which extended the concepts of
SPW /SDW by presenting an enhanced state machine model for
designing asynchronous systems.

d. Software Management Workshop (SMW) which presented management
models and methods for software development.

The objective of this program was to educate all programming professionals in SPW

and to have the experienced software engineers attend SDW and ADW. In addition, all

software managers plus the lead technical staff should attend the management class.

3. Phase II (1984 Course Evaluation)

In 1984, a major revision of the program was undertaken. Practically, all the FSD

programmers had attended SPW and nearly 40% had attended SDW. A smaller

number of students attended ADW (perhaps 10%) but this included a majority of the

division's lead designers. FSD projects were reporting an increase in quality and

productivity with the increased use of the software engineering standards and

methodology. Continuing the education program was worthwhile but the classes should

have reflected changes that were happening within FSD and the general programming

environment such as:

• New FSD programs (such as FAA) had significant reliability requirements .

• New hires were joining the division who were very knowledgeable in software

496

www.manaraa.com

engineering methodology.

• There was an increasing need to train software subcontractors in the use of
this methodology.

• There was an increasing need to relate the power of the Ada language to the
design concepts stressed in the training program.

• The IBM Corporation had adopted the FSD education program and was now
teaching that methodology to all IBM programmers. A course called
Software Engineering Workshop (SEW) was developed that taught the
SPW /SDW material in a single 2 week format at the Software Engineering
Institute (SEI) in New York.

It was time to take a fresh approach to education; emphasize concepts that were

working, summarize those points that were obvious, and introduce subjects that might

be new and beneficial. All this needed to be done while still focusing on the practices

that provided overall direction to FSD project development.

To address this situation, the Software Engineering Education department (SEEd) was

established in October, 11)84 and chartered with 3 primary goals:

1. To provide consistent software education to the entire division.

2. To establish a pool of consultants at each of the FSD sites that will help
transfer the FSD technology to actual software development projects.

3. To provide education that will blend the FSD practices and technology with
the Ada language.

The education staff consists of instructors from many of the major FSD sites who are

responsible for conducting classes throughout the division. The education department

keeps in close touch with SEI to gain insight into new software approaches being

presented in the corporation. There are currently eight instructors, all accredited as

SEI instructors, and an administrator in the FSD Software Engineering education

department.

497

www.manaraa.com

4. FSD Environment

A. IBM FSD Software Life Cycle

To really understand the FSD education program one needs to understand the FSD

Practices and the life cycle that the program addresses. Figure 2 is the life cycle model

of the software engineering process defined within the context of a typical FSD

environment of concurrent hardware/software system development. The software life

cycle organizes all work into seven activities. There are five development activities

(system definition, software design, software development, software system test, and

system/acceptance test) that takes the system from its initial conception to user

acceptance. In addition, the operational support activity provides post-acceptance

support and the general support activity spans the entire life cycle. These 7 activities

are further divided into 26 sub activities or work components that provide more detail of

the work involved.

Thirteen of these work components (Figure 3) show how a developing software system

proceeds from definition to system acceptance. These 13 work components are classified

as either design or test components. Progress down the left-hand side is made by

stepwise refining the system through the sequence of design work components leading to

Program Development. Progress up the right-hand side is made by integrating and

testing the system through the sequence of test work components leading to an accepted

system.

A fundamental relationship among the 13 work components is that each set of test

work components corresponds to a set of design work components indicated by the

dotted lines in Figure 3. Software integration is carried out according to the software

desigiJ.; software system test is conducted against the software specifications. Thus, the

success criterion for each test work component is the responsiveness of the software

implementation to the corresponding design work component.

In addition, the success criteria for each test work component are defined during the

498

www.manaraa.com

corresponding design work component. Thus, there is a determination of system

acceptance test specifications with system specifications, system integration plans with

system design, software test specifications with software specifications, and software

integration plans with software design.

B. Life Cycle Application

Figure 3 is a basic model illustrating the sequence of steps by which system

requirements are transformed into a physical system. Variations in individual projects

are accommodated by properly applying and interpreting this basic model. In a

hardware/software system development, Levels 1 and 2 result in a decomposition of the

system into hardware and software elements, and their eventual integration and

acceptance as a complete system. Levels 3 and 4 result in the implementation of the

software elements, and typically have a hardware counterpart that results in a

concurrent implementation of hardware elements.

Further decomposition of the system into multiple software products may take place

at levels 2, 3, and 4. Thus, there may be many concurrent software implementations,

each of which is progressing through its own life cycle from the point of decomposition

to the point of integration.

Decomposition of the system into lower-level elements, whether occurring at the

system or software levels, results in the creation of interfaces that are documented and

controlled to ensure successful integration. Each element created by such a

decomposition may be viewed as following its own parallel path of life cycle tasks. Its

specification includes the interfaces defined by the decomposition as well as the

allocated function, and its life cycle path retains its identity until the point at which the

element is integrated with some other element.

Figure 3 depicts the ideal flow of a developing system through a sequence of Software

Life Cycle work components, without explicitly considering perturbations caused by

changes of requirements or the discovery of errors. As a result of such perturbations,

499

www.manaraa.com

previously completed work products may be extended or modified.

5. FSD Software Engineering Education

The SEEd classes were developed to support software activities at various phases of

the FSD Software Life Cycle. In 1978, the focus was on detailed design activities as

identified in the SPW, SDW, and ADW classes. The plan in 1984 was to enhance these

existing classes and to add additional classes to address life cycle activities that were not

covered. Additional classes would include a testing workshop dealing with unit and

system testing, a software engineering class emphasizing the Ada language, and a class

on system architecture. These classes and their intended audiences are shown in Table

I. In addition to the software engineering courses taught by FSD instructors, there are

computer science courses taught by university consultants.

More recently, design of an Ada curriculum has become an important topic. A

candidate Ada curriculum is shown in Table II. Although some of the courses are

currently being taught, the curriculum as a whole is under development.

In the last year and a half the education department has conducted 43 classes and

trained approximately 950 students. These classes were taught at all FSD locations

with the majority of classes in Gaithersburg and Bethesda, Maryland.

5.1. Class Offerings

The current list of classes offered by SEEd includes:

a). SOFTWARE ENGINEERING WORKSHOP (SEW) is a two week class that

replaces the SPW /SDW classes. The workshop goals are to increase the student's

ability to maintain intellectual control over software complexity and to encourage

personal development and professionalism within the software community.

500

www.manaraa.com

The first week deals with pure procedures, using the model of a mathematical

function. All designs in SEW are expressed in PDL/Ada, an Ada based design

language. The class defines a basis set of 8 control structures that are used to design all

procedures. Stepwise refinement describes a methodical way to design starting with one

intended function or assignment statement and continually replacing it with a structure

from the basis set. Correctness is addressed by providing a verification method for each

structure in the basis set.

The second week of SEW deals primarily with the subject of data and its refinement.

The material is divided into three major topics; specifications, design, and proof of

design correctness. A new model (state machine) extends the function model to include

state or retained data, thus providing it with a memory.

SEW stresses the need to express two views of the module, one for the user and one

for the designer. The user's view is achieved through the use of data abstraction in a

specification that describes "what" the proposed module will do and hides the lower

level details of design. All transitions (behavior and interfaces) are fully defined in

terms of an abstract model for the state data.

Data is the main driver for the next step of refinement. Once the designer selects a

concrete data structure for the design, the intended functions are rewritten in terms of

the new data format.

The final step is to verify the design. The verification lecture gives students an

insight into the mathematical process of correctness plus a set of informal questions that

can be asked during a design inspection.

SEW has a case study to specify and design a management system for a county

library. The case study teams must create a formal specification and at least one level

of design from a set of high level requirements.

Much of the material in the SEW class is discussed in greater detail in the book

501

www.manaraa.com

"Structured Programming" by Linger, Mills, and Witt (19) which is distributed to

students.

b). ADVANCED DESIGN WORKSHOP (ADW) extends the modular design

methodology taught in SEW to concurrent systems. It begins by identifying the

problems unique to concurrent design and introducing an extension to the state machine

model that stresses data encapsulation, coherence and stability.

The ADW model consists of three components, called Application, Control Services,

and Hardware Services. Applications programs compute the information required by

the client without regard for the potential interference of other executing programs.

Control Services include run-time services such as creation of address space, inter

module communication, and non-interfering access to common data. Control Services

intercepts program invocations, embeds the parameters in messages, sends the messages

to the addressed module, and returns output parameters to the invoker. The

Applications programs appear to Control Services as a network of modules. Hardware

Services are concerned with presenting a "friendly" representation of the physical

hardware being used. They are not concerned with the network of programs

communicating between different memories; they are only concerned with the execution

of one or more processors executing in a single memory. ADWprovides students with

both an understanding of the problems and an appreciation of the importance of safety

and correctness in concurrent design. A variety of approaches to the design of safe,

correct, concurrent systems is explored. A case study is included to reinforce the ideas

and to give initial experience putting them into practice.

The primary focus of the course is on the Application and its interface with Control

Services. The basic unit of design for Application programs is the module, which

encapsulates persistent data. Programs are expected to terminate, and modules remain

dormant until invocation. The network view facilitates distributed processing; however,

undisciplined invocations can lead to deadlock. Methods for avoiding deadlock,

management of data stability, data coherence, and task precedence are discussed in the

502

www.manaraa.com

course.

ADW addresses material found in a technical report by B. Witt, which served as the

basis for two published papers, (24) (25), and other reading from the literature on

concurrency (3), (7), (11), (20). This workshop is currently being extended to include

high-level architecture considerations for sYStem decomposition.

c). SOFTWARE MANAGEMENT WORKSHOP (SMW) is organized around the FSD

life cycle and a Manage to Objectives (MTO) approach. The MTO approach satisfies

three sets of objectives (cost, schedule, and product) through continuous planning,

monitoring, and replanning as the project evolves. The management decisions that are

made depend upon the relative priorities of the three sets of objectives to obtain

optimal performance against them.

SMW has a model of the management process (Fig. 4) consisting of 2 planning

processes (analysis and synthesis) and a supervision process. These three processes are

embedded in a software environment that is unique to a project and location. The

workshop spends nearly 80% of the time on the planning process and only briefly deals

with supervision; this decision is based on experienced management's comments that

supervision is well known and performed reasonably well while the planning activities

tend to be less well understood and practiced.

The analysis process of planning provides 3 orientations for managers. A product

orientation encourages managers to gain intellectual control of their project by

identifying all known work products in a work breakdown structure. The schedule

orientation defines key dependencies and major milestones which will provide a skeleton

of a project's overall schedule. The cost orientation discusses top down or bottom up

estimating and references the book "The Mythical man Month" (12).

The synthesis process uses knowledge from the analysis process to build a set of plans

and controls for schedules, cost, and products. Cost controls are centered around the

earned value concept. This term and its place in the FSD accounting sYStem is defined,

503

www.manaraa.com

and various conservative methods of claiming earned value are discussed. Schedule

controls primarily deal with the software development plan and the need to identify

clear and precise milestones. The product controls concentrate on computer resources,

the development resources, and the need for a strong software architect.

Supervision includes comparing actual measurements to planned values to determine

the health of the project. Early detection of problems is critical to the success of a

project because it permits a wider range of management options. Early visibility is

provided through management reviews, technical inspections, and cost/schedule

measurements.

Approximately 33% of the class consists of a case study where students have an

opportunity to apply the SMW concepts.

Many of the SMW concepts are discussed in the book "The Program Development

Process" by J.D. Aron (4).

d). SOFTWARE TESTING WORKSHOP (STW) is a workshop describing the role of

testing in the FSD life cycle. The testing workshop focuses on development testing and

system testing with proper testing tools applied to each area.

Development testing looks at the unit and integration testing done initially by the

development programmers. STW discusses three levels of test coverage. CO coverage

means that every instruction has been executed in the program at least once and CI

coverage means each segment (code from one predicate to the next) is exercised at least

once. The third level of unit test coverage is path coverage. Complete path coverage is

impossible particularly when loops are present. Therefore, a compromise (called Ct

coverage) is used with the assumption that one path through each loop closely

approximates total path coverage. STW concludes that a coverage between CI and Ct

is recommended as the minimal acceptable unit test criterion and other levels of testing

beyond unit testing are needed.

504

www.manaraa.com

Integration testing is the second level of development testing. Incremental integration

testing is stressed when the individual modules are joined together in increments and

tested before other modules or units are added.

System testing should be done by an independent testing organization that views the

system as a user. Four approaches to system testing are introduced with special

emphasis placed on the cause-effect graphing technique. Testing tools are introduced in

class with the objective of encouraging students to use and understand categories of

tools, particularly those that are available at their location.

The class ends by discussing project planning and estimating issues relating to

software testing problems and achieving software quality. A case study is introduced to

reinforce many of the lecture principles. STW discusses many topics found in text

books by Beizer (6) and Myers (21).

e). SOFTWARE ENGINERING WITH ADA (SEA) is a 40 hour workshop that

focuses on the design of software systems with particular emphasis on the application of

Ada language facilities to support software engineering. SEA is not intended to be an

Ada language class, but a software engineering class that extends the basic concepts

taught in SEW.

The major objectives of SEA are:

1. To be able to decompose a software system into modules using an Object
Oriented development (OOD) technique, and record the design using
PDL/Ada.

2. To recognize the goals and principles of software engineering and describe
how the following features of Ada support these principles and goals:
packages, separate compilation, separation of specifications from bodies,
strong typing, exceptions, generics, and tasking.

3. To be able to specify and refine designs using packages, generics,
subprograms, exceptions, and tasking.

A design produced using the OOD process can be represented as having several layers,

505

www.manaraa.com

each layer at a decreasing level of abstraction. Connections between successive layers

are viewed as refinements; that is, the modules that are specified in one layer are

refined or implemented in terms of modules that are specified in the next lower layer.

Modules are described in terms of the operations that are exported and the description

of the state data that is encapsulated within the module.

SEA participants have ample opportunity to exercise the OOD process in a Case

Study project. The Case Study exercise consists of three activities: Software

Architecture, Subsystem Design, and Modular Design.

The class is built around a number of recent articles and books that are referenced in

the workshop. (1), (2), (5), (9), (10), (13), (14), (15), (16), (22), (23), (24), and (25).

5.2. University Classes

f). INTERACTIVE SYSTEMS DESIGN (ISD) is a three day class taught by visiting

college professors (principally Dr. Ben Shneiderman and Dr. Rex Hartson). This course

discusses the relative merits of design alternatives such as menu selection and command

languages for specific users and applications. Interactive issues such as user anxiety,

response time, on-line aids and error handling are discussed and a management plan is

presented that emphasizes human factors. Dialog management (theory, model and

tools) is presented as an integral part of the software engineering problem. This course

provides recent research results in the design and evaluation of interactive systems.

g). COMPUTER SCIENCE TECHNIQUES (CST) is a one week class taught by

college professors. This class expands and builds upon the ideas presented in SEW.

Mathematical logic, graph theory, finite state machines, efficiency measures and

notations, representation of advanced data types, and verification of pre and post

conditions are covered in this course. This course requires a higher level of

mathematical maturity because CST emphasizes theory more than method and is highly

analytical.

506

www.manaraa.com

h). SCIENCE OF PROGRAMMING is an experimental course taught by Professor

David Gries of Cornell University, based on the material in his book(I~. This class

introduces a theory of correctness and uses it to develop programs from formal

specifications. The theory is reinforced by developing 30-40 algorithms during the

week.

6. Consultation

Starting the last quarter of 1985, the SEEd began hosting a series of meetings for

experienced lead designers and programmers from multiple FSD business areas. The

objectives for these round table meetings are:

• Share the experiences gained from developing software systems in FSD, with
the goal of better application of methods, better designs and new insights.

• Refine the concept of a "common vision" for FSD software design
methodology.

• Foster discussions about the essential elements, objectives, theoretical basis,
and practical basis of software design.

• Discuss SEW concepts aimed at producing error-free software.

Benefits are foreseen from a regular exchange of ideas related to software design,

software management, and software testing.

7. Conclusion

Beginning in the early 1980's, a few large software system programs (software systems

that contained more than a million lines of high level source code) at FSD began design

and development using the standards and methodology taught in the division's software

engineering training program. The initial results demonstrated that the quality of the

FSD software product was greatly enhanced. Some of the measured results and/or

507

www.manaraa.com

conclusions were (18):

• The rate of documented errors was relatively low as compared to other large
scale systems.

• The error corrections were localized to a few modules. One system reported
that the average number of modules changed per error was 1.9.

• The number of fixes that did not resolve the errors was low, perhaps in the
5% range.

• The number of fixes that introduced new errors was also very small, perhaps
less than 1%.

This trend has been very encouraging. While the initial goal was to improve

productivity, FSD has seen that the quality of our software has greatly improved. More

subjectively, it appears that the software systems have improved in other ways such as:

• The software systems appear more manageable; there are more opportunities
to gain early insight into the quality of the product and to take corrective
actions.

• The classes provide a common software vocabulary for programmers
throughout the division.

• More programmers identify with the software development approach and
can provide alternatives to management for addressing problems.

All of these aspects indicate the success of the education program. By expanding the

education classes and emphasizing the total FSD life cycle, the division expects more

improvements in the areas of quality and productivity.

The transition from the software engineering program to the current SEEd

organization has been driven by marked success in FSD software developments traceable

to the divisions training program. Now, SEEd endeavors to maintain the momentum

and extend the influence and contributions of software education. The continuing

review of trends and developments, use of the proven, and exploration into the new,

including input from consultants, round table discussions, and management and student

feedback will be resources for this goal.

508

www.manaraa.com

References

1. Abbot, R.J., "Program Design by Informal English Descriptions",
Communication8 of the ACM, Vol.26, No.11, November 1983, pp. 882-894.

2. American National Standards Institute, Ada Programming Language,
ANSIjMIL-STD 1815A, Washington, D.C., Government Printing Office,
1983.

3. Andrews, G.R., "Synchronizing Resources", ACM Tran8action8 on
Programming Language8 and SY8tem8, Vol.3, No.4, October 1981, pp.
405-430.

4. Aron, J.D., The Program Development Process, The Programming Team,
Part II, Addison-Wesley, 1983.

5. Barnes, J.G.P., Programming In Ada, 2nd. Ed., Addison-Wesley, 1984.

6. Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold, 1983.

7. Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure Call",
ACM Tran8action8 on Computer SY8tem8, Vo1.2, No.1, February 1984, pp.
39-59.

8. Boehm, B.W., Software Engineering Economics, Prentice-Hall, 1981.

9. Booch, G., "Object-Oriented Development", IEEE Tran8action8 on
Software Engineering, Vo1.12, No.2, February 1986, pp. 211-221.

10. Booch, G., Software Engineering with Ada, Benjamin/Cummings, 1983.

11. Brinch-Hansen, P., "Distributive Process: A Concurrent Programming
Concept", Communication8 of the ACM, Vo1.21, No.H, November 1978,
pp. 934-941.

12. Brooks, F.P., Jr., The Mythical Man-Month, Addison-Wesley, 1975.

13. Brosgol, B.M., "Tutorial on Exception Handling in Ada", Proceeding8 of the
1986 Wa8hington Ada Symp08ium, DC SIGAda, 1986.

509

www.manaraa.com

14. Burns, A., Concurrent Programming in Ada, Cambridge University Press,
1985.

15. Cohen, N.H., "Tasks on Abstraction Mechanisms", Ada Letters, Vol.5,
No.3-6, November-December 1985, pp. 30-44.

16. Gehani, N., Ada: Concurrent Programming, Prentice-Hall, 1984.

17. Gries, D., The Science of Programming, Springer-Verlag, 1981.

18. Jordano, A.J., "DSM Software Architecture and Development", FSD
Technical Directions, VoI.10, No.3, 1984.

19. Linger, R.C., Mills, H.D. and Witt, B.L, Structured Programming. Theory
and Practice, Addison-Wesley, 1979.

20. Liskov, B., "On Linguistic Support for Distributed Programs", IEEE
Transactions on Software Engineering, Vol.SE-8, No.3, May 1982, pp.
203-210.

21. Myers, G.J., The Art of Software Testing, Wiley-Interscience, 1979.

22. Parnas, D.L., "On the Criteria to be Used in Decomposing a System into
Modules", Communications of the ACM, VoL15, No.12, December 1972,
pp. 131-136.

23. Ross, D.T., Goodenough, J.B., and Irvine, C.A., "Software Engineering:
Process, Principles, and Goals", IEEE Computer, Vol.8, No.5, May 1975.

24. Witt, B.L, "Parallelism, Pipelines, and Partitions, Variations on
Communicating Modules", IEEE Computer, Vol. 18, No.2, February 1985,
pp. 105-112.

25. Witt, B.L, "Communicating Modules: A Software Design Model for
Concurrent Distributive Systems", IEEE Computer, VoL18, No.1, January
1985, pp. 67-77.

Acknowledgments

We would like to thank Sam Schappelle and Dr. Mei-Cheng Hu for their involvement in

the writing of this paper, particularly their inputs to the SEA and STW sections.

510

www.manaraa.com

ORGANIZATION OF THE FSO SOF1WARE ENGINEERING PRACTICES

o INTRODUCTION o GLOSSARY

!
I

IYPlEMENTATION PRACTIC£S

o PROGRMIIING STRDRDS
MD COIMNnoNs

o SOF'IWME DEsIGN

o IHCREMENrAL SOF'IWME
0EvEI.0PUENT

o FORMAL INSPECTIONS
I

I..ANGtJAGES

1'=--
!
I

• SOF1W£ IlNI.GPIIENr PUN

<lr-----I> • SCIr1WJE 1XA _

I

o AM-a\sEI)I PRoClEsS DEsIGN IN<<lI.WIE (PDI./ AIM)

o PRoClEsS DEsIGN IN<<lI.WIE (POL)

TOOlS

• ADA IS A REGISTERED TRADEW.RI(or lHE U.S. GcMRNt.tENT,

NJA JOINT PROGRAM OFFICE

FIG. 1

511

www.manaraa.com

THE BASIC UFE CYCLE

UFE C'tCI.E ACIMlIES

GENERAl. SUPPORT

ACIMIY WORK COUPONENT

o S'ISIEU o S'ISIEU REQIHYENTS SUPPORT o SOflWARE o SOf1WARE lEST PROCEDURES
DEFINIIION smEll lEST o SOf1WARE lEST EXECUlION

o S'ISIEU DESIGN SUPPORr
o S'ISIEU/ o smEll INTEGRATION SUPPORT

o SOf'IWARE SPECIfICATION ACCEPTANCE
lEST o SYSIEM ACCEPTANCE lEST SUPPORT

o SOFTWARE IlEVELOPMENT PlANNING
o 0PERA1ION1L o SYS1nI OPERATIONAL SUPPORT

o E'NGINE£RfHG atANGE ANALYSIS SUPPORT o TRAINING
o SITE IlEPI.O\'WENT SUPPORT

o SOFTWARE o FUNCTIOHAI. DESIGN
DESIGN o INTEGRATION PlANNING o GENEIW. o PRO.IECT IIANAGEMENT

o PROGRAM DESIGN SUPPORT o SOF'IWARE CONFIGURAllON CONTROl.
o SOF1WARE TOOLS DEfINITION o SOf1WARE COST ENGINEERING
o DESIGN EVALUATION o SOFTWARE QtW.IJY ASSU~

o ADIIINIS1RAlM: SYS1nI CENTERS/
o PROGRAM IlEVELOPMENT TECHNICAL PlIBI.IrAlIONS

o SOFIWARE o UNIT TESTING
IIE'tt\.OPIEHT o INTEGRATION T£S1ING

o PROIII.£M ANALYSIS AND
CORRECTION

FIG. 2

512

www.manaraa.com

DESIGN - TEST RElATIONSHIPS

SYSTEM LEVEL 1 SYSTEM
REQUIREMENTS ----- ACCEPTANCE

SUPPORT TEST SUPPORT

SYSTEM LEVEL 2 SYSTEM
DESIGN ,------ INTEGRATION

SUPPORT SUPPORT

SOFTWARE
LEVEL 3 SOFTWARE SYSTEM TEST:

SPECIFICATION
c----- sonwARE TEST PROCEDURES

SOFTWARE TEST EXECUTION

SOFlWARE DESIGN: LEVEL 4
FUNCTIONAl DESIGN c----- SOFTWARE DEVELOPMENT
INTEGRATION PlAANING INTEGRATION TESTING
PROGRNoI DESIGN

SOFTWARE DEVELOPMENT
'---: PROGRAM DEVELOPMENT -

UNIT TESTING

FIG. 3

A MODEL OF MANAGEMENT ACTIVITY

SOnwARE ENGINEERING ENVIRONMENT ! .. ;;;;;;;;;;;. ;;;;;;;;;;;;; .. ~;.;;;;;; i

1 1
: :
j j

1 i
: :

I I
: ------------------- .. -.-._----------.-._--_ .. ---.-----~

FIG. 4

513

www.manaraa.com

S!W ENGINEERING ClASSES

CIASSD SEW $£A SIll' SIll $1W $1W
AdJINC[MII'4'I

GEIIIIII.
IIIIIIEIISS

PIIOI'CIIM.S PfD PfD PfD /If

S/WIIGI/I' PfD /If PfD lIP

S'/SJEII PfD /If I'fl) /If ",
DU.

f1IICIIDNII. PfD PfD /If /If II¥
DESIGN

IlUM. PfD II¥ /If
1IlIIGII

CODE PfD /If

S/W1ESI PfD PfD

Pro - PREFERRED ClASS; N'P - N'PUCABLE ClASS

TABLE I

IDA ClASSES

CIASSD IMSIC IIIRO $£A - IlIA IlIA
AIJIIIHC[IlIA TO ADfI TOPICS EX1DNALS IHItRIW.S

GOEIW. PfD PfD IIIUR£NESS

PROI'OSo\LS II¥ PfD

S/l1IGI/I' PfD

SYSIEII II¥ PfD PfD DU.

f1IICIIDNII. II¥ PfD PfD DESIGN

DEW. II¥ PfD /If PfD DESIGN

CODE PfD II¥ PfD II¥ PfD

S/I TEST II¥

Pro - PREFERRED ClASS; N'P - N'PUCABLE ClASS

TABLE II

514

www.manaraa.com

THE CHALLENGE OF TECHNOLOGY TRANSFER

John E. Gibson, IBM Federal Systems Division

Vicki K. Heilig, IBM Federal Systems Division

ABSTRACT

Because of the increasingly complex nature of the work undertaken by
Federal Systems Division of IBM, a software engineering curriculum was
initiated to train all programmers in the division's practices for developing
high-quality software. These practices were selected from the best academic
and industrial experience available and they were documented to ensure their
consistent application across the division's wide range of projects. While the
division had great success in developing the classes, teaching them and
measuring the student's ability to understand and use the concepts, the
challenge of their usefulness was whether the technology could be transferred
to the working environment. To speed this transfer and to exchange ideas
and experiences associated with using the technology in the field, a Software
Engineering Forum was defined and conducted to aid lead designers and
programmers in sharing information about experiences gained and technology
learned. They also aided the Software Engineering Education Department in
making assessments about the practicality and usefulness of te concepts, tools,
and technologies taught by the department.

1. INTRODUCTION

Traditionally, Federal Systems Division (FSD) of IBM has been involved in providing

specialized technology in both hardware and software to the United States government.

Because these activities usually dealt with large complex, long term systems both in

development and use, the division recognized that the latest state-of-the-art technology

should be understood and applied by all the programmers in the division, if the division

were to remain competitive. Leading this drive for modern software development

practices was Dr. Harlan Mills.

www.manaraa.com

His work in the academic environment, coupled with his knowledge of the practical

experience being accrued by the 2000+ programmers in FSD, led him to the conclusion

that more systematic, 'mathematical rigor was needed in the software development

process. Additionally, Dr. Mills convinced then Division President, John Jackson, that

all programmers in the division should be trained in the new practices. To meet this

goal the division developed and implemented a series of software engineering classes to

educate the entire programming population.

All 2000+ programmers attended the basic class in the series, the Systematic

Programming Workshop (SPW). Some 800+ key designers in the division attended a

more advanced Systematic Design Workshop (SDW). In 1982, these two FSD classes

were combined into a two-week Software Engineering Workshop (SEW) by the Software

Engineering Institute, IBM Corporation, New York City. (The course is currently being

offered to programmers throughout the corporation.) Other courses that have added

rigor to the software development process are: Advanced Design Workshop (ADW) ,

Software Management Workshop (SMW) , Software Testing Workshop (STW), Software

Engineering with Ada! (SEA, Interactive Systems Design (ISD), and Computer Science

Techniques (CST). The technology itself is discussed in references (1), (2), (3), (4), (5),

(6), (7), (8), (9), (10), (11), (12), (13), (14), (15).

Once this technology has been mastered in the classroom, the challenge is to transfer

the techniques and concepts to the practical environment where new, bigger, and more

complex problems of software development are on the rise. This paper will describe the

Software Engineering Forum, FSD's vehicle for spreading the use of the technology in

the field. Included in the description will be a discussion of its incorporation, its

definition, its execution, and its benefits.

1 Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

516

www.manaraa.com

2. THE NEED FOR TECHNOLOGY TRANSFER

After programmers and engineers have attended Software Engineering classes, they

return to their projects where tailored interpretations of the core methodology are

employed. There the fundamental ideas are internalized through .practice, and te

methodology is refined and extended. This leads to diversity and evolutionary

enhancements to the techniques. In-the-field adaptation addresses the problems of

scaling the technology up to handle extremely large (1.5 million source Jines of code)

software systems, of adjusting the terminology and software design components to

match changing government standards, and of incorporating the use of tools (e.g.,

library management, architecture definition, and others).

Some technology transfers locally through established channels such as Software

Engineering Councils (staffed by software executives) or through internal publications.

Some of the advances made by each project are transferred by informal conversations

between friends or by chance when personnel rotate among projects. In addition to

these channels, the Software Engineering Education Department of the Federal Systems

Division has created a Software Engineering Forum to offer an avenue of direct

technology transfer between software technology experts on a regular organized basis.

The following sections will examine Forum objectives, method of formation, synopses

of early meetings and conclusions.

3. FORUM OBJECTIVES

The objectives of the Forum are:

• To share design experiences gained from developing software systems in
FSD, with the goal of better application of methods, better designs and new
insights .

• To refine the concept of a "common vision" for FSD software design
methodology.

517

www.manaraa.com

• To foster discussions about the essential elements, objectives, theoretical
basis, and practical basis of software design.

• To discuss Software Engineering Workshop (SEW) concepts aimed at
producing error-free software.

4. METHOD OF FORMATION

To identify representatives to the Forum, the first invitation letters were sent to

Software Development Mangers in the Federal Systems Divisions. This process helped

to inform the managers who lead software organizations of the formation of the Forum

and to get them to commit to sending a representative. The invitation letter stated

that the attendees should be programmers who:

• have been actively engaged in software design for at least four years with
IBM

• are graduates of SEW (or Systematic Design Workshop, an earlier version of
SEW)

• are non-management technical leaders who influence or establish software
development practices in their areas.

Because the invitations went to different functional areas, attendees nominated had

diverse backgrounds with experience over different projects, customers, system sizes, etc.

These differing viewpoints allowed most facets of software design, software management

and software testing to be addressed. The originators of the Forum stressed that the

frequency of the meetings would depend on the software community's response to the

first meeting. While the first meeting was attended by programmers, it was suggested

that some future meetings could include software managers.

At the first Forum, the attendees planned for short, focused meetings (two hours) to

allow each meeting to have a theme. It was also decided that the participants would

have a rotating responsibility for taking minutes and distributing them, and that the

participants themselves would help choose the topics for discussion. The Forum

518

www.manaraa.com

guidelines for conducting the meetings included scheduling meetings everyone to two

months.

The Software Engineering Education Department's role was to organize and

coordinate the meetings, to speak on the technology or obtain other speakers from

throughout the Division, to disseminate information about the Forums and other related

meetings, to conduct seminars for the various projects, and to provide consultation

about the technology as the projects requested it.

From the first meeting in October, 1985, the regular exchange of ideas in the monthly

Forum has increased the flow of information about software design, management,

testing and tools used in the local Washington Metropolitan area within FSD. Even

people from different areas of the ~ project are sharing ideas about tools that have a

common usability.

5. MEETING SYNOPSES

In the FSD Forum the topics presented were of interest and use across projects.

Listed below is a synopsis of some sample presentations discussed in the Forums .

• The benefits and deficiencies of our formal design methodology have been
expressed over the course of several meetings. Benefits include: a) designs
are necessary for learning one's way into a solution to a software system (the
idea that design is part of. a continuum to code), b) designs are needed to
maintain intellectual control over a large, complex software system (essential
for coordinating the efforts of a hundred or more people), c) designs are
needed by people new to a project (assuming design records abstractions at
several levels of detail). Deficiencies were also noted: a) designs become too
detailed and are no easier to read than code, b) retaining designs adds an
additional level of maintenance that contracts don't provide for, c) minimal
number of tools were available to compensate for the increase in text
processing and symbol processing that formal designs entail.

• Formal designs recorded in an Ada based Program Design Language are
generally large and relatively slow reading. Their strong points are precision
and completeness. They don't make good view foils for customer
presentations. For Preliminary Design Reviews (PDR) and Critical Design

519

www.manaraa.com

Reviews (CDR), graphical abstractions of system design are more
appropriate and faster to comprehend. At one meeting we discussed the
problems of customer reviews and shared ways of graphically depicting the
designs. An interesting point arose concerning these customer reviews: even
though design graphics are created for formal meetings, the customers are
insisting that the complete design be reviewed by their staffs prior to or
subsequent to the PDRs and CDRs. This means that now we must produce
and support two forms of recording system design and must be prepared to
answer questions about both forms .

• Designs are generally recorded as state machines at the highest level of
abstraction. We often try to decompose a system into a small number (say
six if possible, but as many as necessary) of these software components. If
the system is not interrupt-driven and is composed of components that may
run concurrently but don't interact with one another, fairly straightforward
hierarchies and networks are sufficient to describe a system. At one
meeting, two people from FSD Headquarters reported on their special, one
year assignment to apply the methodologies to a distributed processing
system. The architecture needed for this system was significantly different
from the architecture most Forum members were familiar with. They
devised two basic components called "storage objects" and "task
objectives." These had some of the attributes· of functions and state
machines, our usual software models, but were significantly different because
of the triggering and blocking mechanisms built into the data objects. The
system architecture was a graph with data objects and task objects as nodes .

• Our Program Design Language is based on Ada (PDL/Ada), but until very
recently, our implementation has been in JOVIAL, PL/I, or assembler.
Using PDL/Ada for design can lead to problems when translating Ada to a
target language. The primary difficulty occurs with data structures because
Ada supports more complex structures and imposes fewer restrictions than
the target language. To preclude these difficulties, projects often document
the structures allowed in their implementation language and then supply
guidelines for PDL/Ada data structures that can be translated to the target
structures, i.e., design options are restricted. Ada has closed control
structures (IF, WHILE and other structures are terminated with an ENDIF
or ENDLOOP), but some target languages do not, e.g., JOVIAL. In
addition, JOVIAL and other languages require a BEGIN-END keyword pair
for a sequence of statements and Ada does not. One project in Gaithersburg
took an approach that was the converse of the usual. They modified their
target language to make it look more Ada-like. They accomplished this,
using the DEFINE capability of JOVIAL. The subsequent translation of
PDL/Ada to JOVIAL produced code that was easier to visually compare to
its design, was less subject to translation errors, and had fewer data

520

www.manaraa.com

structure restrictions imposed on the designs.

The Forum members hear technology information as described above first-hand and

are able to report it back to high level software management. This forges a direct

connection for technology transfer that is short, direct and quick. The ultimate success

of the Forum approach depends on team effort (project representatives, project

managers and education department).

Each must encourage and support one another. Third-level managers, in particular,

play a key role. They hold the technology resources and they strongly influence the

level of participation of their representatives. We urged management to encourage

representatives to share project technology and to ask for minutes of the proceedings of

each Forum.

In addition to disseminating information to the individ'lal FSD projects, the Forum

has also been very beneficial to the Software Engineering Education Department

because the topics discussed have included:

• What concepts/tools/technologies are being used on the projects?

• Which are valuable and/or practical, which are not?

• Which are used in total, which are used partially?

• Which are easy to use as taught, which are difficult?

Because most FSD projects have Federal government customers, their development

activities and work products are similar. These include system definition, software

design and development, system/acceptance test, tools, and design language (PDL/Ada).

Lessons learned on one project are then directly applicable to another project. The

Forum speeds information about these lessons to each project as well as serving to aid

the education department to determine the success and failures of the technology.

521

www.manaraa.com

6. CONCLUSIONS

The Forum discussions have helped the developers and teachers of the technology

decide what we as a division have learned now that we have applied the technology on

projects. The Forum is a place for analyzing and advertising the successes and the

failures. Some discussions include reasons for discarding parts of the technology because

applications were unique, and the standard technology did not apply. However, for the

Software Engineering Education Department, the major benefit of the Forum has been

to "measure the water" where the use of the technology is concerned and to compare

what is taught against the application of the technology. This will allow us to enhance,

stress, improve, de-emphasize or change the technology as deemed appropriate in our

environment and it provides us a standardized, formal avenue for disseminating the

technology to the projects throughout the division. Because of the word-of-mouth

endorsements of the success of the Forums, other divisions within IBM are adopting the

concept for use in their environments where work components and products are more

diverse than those of FSD.

522

www.manaraa.com

References

1. Aron, J.D., "The Program Development Process, The Programming Team,
Part III", Addison Wesley, 1983.

2. Barnes, J.G.P., Programming in Ada, 2nd Ed., Reading, Mass., Addison
Wesley, 1984.

3. Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold, 1983.

4. Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure Call",
ACM Transactions on Computer Systems, Vo!' 2, No.1, February 1984, pp
39-59.

5. Boehm, Barry W., Software Engineering Economics, Prentice Hall, 1981.

6. Booch, G., "Object-Oriented Development", IEEE Transactions on
Software Engineering, 12:2, February, 1986, pp 211-221.

7. Booch, G., Software Engineering with Ada, Menlo Park, California:
Benjamin/Cummings, 1983.

8. Brinch-Hansen, P., "Distributive Process: A Concurrent Programming
Concept", CACM, vo!' 21, No. 11, November 1978, pp 934-941.

9. Brooks, Frederick P., Jr., The Mythical Man-Month, Addison-Wesley, 1975.

10. Jordano, Anthony J., "DSM Software Architecture and Development", FSD
Technical Directions, Vo!' 10, No.3, 1984.

11. Linger, R.C., Mills. H.D., Witt, B.I., Structured Programming. Theory and
Practice, Addison-Wesley, 1979.

12. Myers, Glenford J., The Art of Software Testing, Wiley Interscience, 1979.

13. Parnas, D.L., "On the Criteria to be Used in Decomposing a System into
Modules", Communications of the ACM, 15:12, December, 1972, pp
131-136.

14. Witt, B.I., "Parallelism, Pipelines, and Partitions, Variations on
Communicating Modules", IEEE Computer, Vo!' 18, No.2, February, 1985,
pp 105-112.

523

www.manaraa.com

15. Witt, B.L, "Communicating Modules: A Software Design Model for
Concurrent Distributive Systems", IEEE Computer, Vol. 18, No.1, January,
1985, pp 67-77.

524

www.manaraa.com

SECTION III

PANEL SESSIONS

Section III consists of two Parts that contain edited transcripts of two
panel sessions and the associated question/ answer sessions. The first panel,
contained in Part 1, presents four models of industrial/ academic interfaces
in software engineering education. Part 2 contains the edited transcript of
a panel session on the role of Ada in software engineering education.

www.manaraa.com

SECTION III

PART 1

FOUR MODELS OF INDUSTRY/ACADEMIA INTERFACES

Part 1 contains the edited transcript of a panel session and the associ
ated question/answer session on industry I academia interfaces in software
engineering education. The panelists were Mark Ardis of Wang Institute,
Jonah Lavi of the Israel Aircraft Industry, William Lively of Texas A&M
University, and Doug Politi of General Electric. Priscilla Fowler of SEI was
chair of the panel. The panelists' remarks are based on their papers, which
are contained in Section II, Parts 3 & 4.

www.manaraa.com

Panel Session on Four Models of
Industry / Academia Interface

Priscilla Fowler: I'm happy to be organizing the panel entitled "Four
Models of Industry/Academia Interface." I think that both industry and
academia have made pretty significant contributions to software engineer
ing education. However, I think if you added up all the students who
have become practitioners, who have gone through Continuing Education
Programs or Retraining-type programs at IBM, AT&T, Boeing Computer
Services, Hewlett-Packard and Digital, you would probably give the aca
demic people a run for their money, in terms of actual completions through
the program and the generation of people doing software engineering. Un
til recently, many companies not only offered their own courses, but wrote
their own texts and designed their own curriculum. Only recently, we have
begun to see software engineering courses commonly offered with a few
degree programs.

This is a shift toward a much more collaborative approach between
academia and industry, for teaching software engineers. There is a signif
icant relationship between a local industry community and an academic
institution, or between a local university and a collection of industries. For
instance, the Beltway Bandits have had a lot to do with what the University
of Maryland teaches. Route 128 has a lot to do with what Wang Institute
has taught.

I'd like to point out where the key elements and threads are. You must
try to learn through your own Industrial Training Programs, how to set
them up or improve them.

Mark Ardis: I'd like to talk about Wang Institute's Master's of
Software Engineering Program. First, I'd like to acknowledge my colleagues
and full-time faculty members of Wang Institute.

www.manaraa.com

Wang Institute is a very cooperative environment, which I think is very
unusual. I will explain how that cooperation has helped us evolve, and try
to point out the unique aspects of the program.

In talking about Wang Institute, I usually explain how it is different
from Wang Laboratories. Wang Institute is a fully accredited, independent
graduate institution, which has been funded largely by Dr. An Wang.
Recently, he decided he could no longer support us. Because he is no
longer our benefactor, we are going out of business.

There are six required courses in our program: Formal Methods, Pro
gramming Methods, Software Engineering Methods, Computer Systems Ar
chitecture, and two management courses; one is called Management Con
cepts, and the other is called Software Project Management. Students must
also complete two project courses. Each project course takes a semester to
complete. Each has three to seven students in it. In addition, we have
traditional, technical, or management electives, in either computer science
or business areas. Each student takes three of those.

I'd like to elaborate on each of the aforementioned courses. Formal
Methods is a theory course. It has sometimes been called, "boot camp at
Wang Institute." It's too much theory, but it's supposed to be all the com
puter science theory a software engineer needs to know, in one semester.
The most important part of it happens to be the first three lines, veri
fication, abstraction, and specification. Those three concepts are taught
with success because they introduce many more concepts and notation
that get used later on in the curriculum. The formal language theory
and the analysis of algorithms are prerequisite topics that students need,
although they aren't as necessary as the first three topics. Programming
Methods and Software Engineering Methods are two courses that are fre
quently packaged together in a software engineering course, in a computer
science department. The division is that Programming Methods stresses
what an individual does, whereas Software Engineering Methods stresses
what groups do together. Thus, Programming Methods consists of cod
ing, debugging and testing, and Software Engineering Methods consist of
requirements analysis, specification, and high level design.

The Computing Systems Architecture Course has changed over the
years, but it's somewhere between a traditional operating systems course
and a traditional computer architecture course. In fact, we have offered
either one of those two courses, to satisfy this requirement. The manage-

530

www.manaraa.com

ment courses try to do two things. First, the Management Concepts Course
is based on management appreciation. Many of our students have techni
cal backgrounds and have never taken a management course before. Their
problem is trying to understand what managers do, why they get paid so
much money, and what their overall value is worth. A lot of management
concepts raise simple organizational issues and organizational structures.
Furthermore, management concepts introduce accounting, finance, mar
keting, and behavior modification. Incidentally, we've had students walk
out of lectures in this course. They were so outraged by behavior modifi
cation, for example. There are a lot of projects going on at the Institute,
all the time. Hence, just about every course has a project hidden inside.

These courses are related to one another in that they both have prere
quisites to the program. We have courses, as prerequisites to the program,
that are the kinds of courses you would see in a traditional, undergraduate
Computer Science Program, such as discrete mathematics, high level lan
guages, data structures, and assembly language. We also require at least
one year of work experience. Those prerequisites lead into the required
courses, and it is evident that there is a relationship between the courses
that have methods. Thus, Formal Methods leads to Programming Methods,
which leads to Software Engineering Methods.

Students actually take the courses during the three consecutive semesters,
if they are full-time students. Therefore, they must take Formal Methods
and Programming Methods during the same semester. We have worked
very hard to make sure that the prerequisite structures still apply. Fur
thermore, there are other courses that are related to one another, that are
not violated. Hence, a typical scenario for a full-time student, is to take four
courses in the first semester, four in the second, and three in the summer
semester.

Trying to describe the average student is risky, because actually, our
students are quite unique. However, the average student is about 30 years
old and has about five years of work experience. Most students are em
ployed by computer manufacturers or software houses in the Boston area.
128 is a fertile hunting ground for this kind of program; the current class
comes from 20 different companies. Some of our students are international;
we've had students from Columbia, Brazil, Switzerland, India, China, and
Australia. Hence, the student body is quite diverse.

We have a significant problem trying to make this very heterogeneous

531

www.manaraa.com

group of people work together. However, we succeed in doing so. The
current class is roughly half full-time and half part-time. The part-time
students work in the local Boston area and they take one or two courses
a semester. All of our courses are in the afternoon. Therefore, students
are usually able to get time off from work. They usually have some kind of
flexible hour arrangement. About half of the full-time students are teaching
assistants and/or research assistants. The other students are full-time spon
sored. That is, their company has paid for them to go to school full-time,
for one year.

What do we have to offer these students? Resourses are a critical issue;
we don't have enough of them. We have a fair amount of hardware. We

, have a 785 VAX and a 750 VAX, currently running on Unix. In addition,
we have a Wang VS 100 that we have been using for word processing,
although that's become less and less popular, since we have so many PC's.
Even though we have a lot of computer horsepower around, it is still not
enough. We don't have any work stations, but we do have a lot of software.
We have standard compilers and text editors, and we have tried very hard
to bring lots of other tools into our environment.

Currently, we have 10 faculty members. Additionally, we have a great
staff, which has made life bearable. We have a nice computer center, con
sisting of six full-time computer center employees, and several student op
erators. They support primarily the academic side , as well as the admin
istrative side. We have a library staff of four, which has helped us in on
line searches and tool searches. A couple of students always work as faculty
technical staff. Typically, we hire them after they graduate. Finally, we
have four faculty secretaries. Thus, I've been very happy with the support,
except for the hardware.

Curriculum is largely due to Dick Fairley and has been modified and
endorsed by the National Academic Advisory Committee. This is a group of
academics and industrialists who come to the institute once or twice a year
to help us out and to make sure that we're on track. Every semester, a very
comprehensive course notebook is created, which contains all of the lecture
material, readings, homeworks, and exams. Hence, it is easy to work from
previous faculty member's experiences, and we review every course before
it is offered. The instructor sends out the syllabus for the new semester, so
that everybody can look at it and make sure that changes that should have
been made from last semester, really have been made. Finally, we've had

532

www.manaraa.com

some comprehensive evaluations, where the faculty has, as a group, looked
over all the courses and made some modification and written a final report.

A problem seems to exist with students who have come full-time, thus
disrupting their careers. How do you get prople to quit a job, where they
are advancing, to go to school? Well, you have to compress the program
into one year or they won't do it.

What about students who are narrow but deep? We've had a lot of
them. You need something like the immigration course. We had a prereq
uisite structure, but the only way that you can find out about it is by talking
to people. We had oral admissions exams; they are very time consuming.

What about conflicts with work? We insisted that our courses would
never be taught at night. Most of our students have a type A personality.
They can't stand to do poorly in anything. But, when they're given a
course that requires 12 to 15 hours of work outside of class every week, and
they are trying to work full-time, there is definitely going to be a conflict.
Therefore, we insist at the oral admissions exam, that students bring this
point up with their manager and tell him or her that they are serious about
going to school.

How do you make sure that methods really get applied? We taught the
fundamentals of one course, practiced them in another course, and practiced
them again in a project course. By having an integrated curriculum, we
could do that. It worked very well.

What about communication and teamwork? We have a lot of projects,
not just the project courses, but projects within the courses. A lot of role
playing goes on; in a typical project course, four students may play up to
12 different roles. The change in perspective is important for them. The
nicest thing we had was a great student- faculty ratio of about six to one.
We deliberately kept enrollment down and we brought in lots of adjunct
and visiting faculty.

Craig Cleaveland: Given the fact that you had your angel, sole
source cost of the program, you paint a very rosy picture, in terms of
resources that you have the student- faculty ratio, et cetera. Is it possible
that such an institute will arise elsewhere?

Mark Ardis: I think it is a significant problem and I don't know
the solution. We thought long and hard about this when we heard that
we were going out of business. A lot of the cost of our program had to
do with the fact that we were a start-up, and we were isolated. Moreover,

533

www.manaraa.com

we had no economy of scale. For example, we did not live in a university
environment, where there was already a library. Nevertheless, it will never
be a profitable institution ifit's a Master's Level Program, because master's
level students are only there one year and there aren't enough of them to
bring in enough tuition. I really don't know the answer. We were developing
a Ph.D. Program in Software Engineering and we thought that that might
help out.

Norm Gibbs: I heard a recent comment that that was a truly noble
experiment for a master's degree education, but somehow got caught up
with the traditional university value system. In other words, it started to
move toward a Ph.D. program. Did you feel closer to the university system
than to the industrial system?

Mark Ardis: Well, I think that faculty and career path is a problem.
It's difficult to attract faculty who are interested in doing research, unless
you have Ph.D. students. This poses a significant problem. What we found
was that people who were interested in doing research, could only do so
much with master's level students. They were frustrated because they could
only get so much out of master's level students, and then they were gone.
It became very difficult to have continuity. The model we were adopting,
was to hire people. We had hired programmers to work on projects and
provide the continuity. However, that wasn't enough. Therefore, I think
that if you're interested in doing research, you've got to have a Ph.D.
program. If you don't have an environment where you encourage research
in software engineering, it's difficult to compete with other universities.
There are so many rewards for doing research, that are recognized outside
of the institute.

Norm Gibbs: I'm afraid I formulated my question unclearly. What
I was really trying to get at was that if you had stayed in business, you
would have ended up looking exactly like a lot of other places, even though
you started out significantly different. You went out of business because
it was such a unique experiment in education, although you were drifting
toward becoming a typical research university.

Mark Ardis: We clearly had a vision that we were to be still very
unique, even with a Ph.D. program. First of all, the whole concept of soft
ware engineering is a separate discipline from computer science. I think we
saw ourselves as being somewhere between management and computer sci
ence. For example, we have members of our faculty who have management

534

www.manaraa.com

degrees, as opposed to technical degrees.
Secondly, we always thought the Ph.D. program assisted the Master's

level program, and that the Professional Degree Program would always be
a major part of the Wang Institute. That is, we thought that the research
done in the Ph.D. program would lead to better tools and methods, which
we could teach in the Master's Level Program. However, we never thought
of the Ph.D. program as eclipsing the Master's Program.

Dick Fairley: It's also true that we were able to set our own reward
structure, because we did not live in a large university environment. Thus,
the Ph.D. program would always have been kept in proper perspective.
People would have continued to be rewarded for being good teachers. In
a larger university environment, it's a very serious question, of whether or
not you could attract the kind of people and run the kind of program you
want, and still compete on the grounds that other people in the university
are competing on. However, we were unique in the sense that we didn't
have that larger structure.

Jonah Lavi: I'll discuss the IAI-Israel Aircraft Industries experience
in the training of software engineers. IAI is a large company, which employs
about 20,000 people. One of our main businesses is the development of
embedded systems such as avionics, missiles, and missile boats. In addition
to software for these systems, we develop software for our CAD-CAM work,
data processing activity, and scientific computing activities.

We set up our own training programs because the demand for software
engineers was large and we could not find the software engineers we needed
in the market. The universities only trained small numbers of computer
scientists, without any software engineering background. Their graduates
could not, for example, handle embedded computer projects without fur
ther elaborate training. We felt that computer scientists, who come to the
industry, don't have the necessary application background. If you want
to develop embedded systems, you should have some previous background,
either in electrical engineering, mechanical engineering, or physics. If you
want to develop business systems, you should have some background in
business or industrial engineering. If you want to develop CAD-CAM soft
ware, you should have a background either in aeronautical engineering or
in mechanical engineering. Hence, we felt that in order to develop good
software engineers, people should first have a degree in an application area
and only then learn software engineering, superimposed on the previous

535

www.manaraa.com

background.
In the beginning, we tried to develop the embedded computer software

engineering program together with the local universities. We had long
discussions with them. But they wanted academic freedom in the develop
ment. This didn't suit our needs, so we had no other choice but to develop
our own program.

The development of such a program was supported by the large training
center of Israel Aircraft Industries which trains employees and customers
in a wide range of technical areas. In the computer systems domain, we
had lots of experience running courses. We had an ADP programmer's re
training program which was tought for several years. So, we had the basic
background to start our own training program in embedded computer soft
ware engineering. As soon as we recognized the need, we set up a steering
committee to develop the program. Basically, we handled the develop
ment like good software engineers. First we wrote the job requirements of
embedded computer systems software engineers. Later, we developed the
top level design of the program. Then, we detailed the design. Once we
outlined the program, we realized that we had to develop some basic new
courses. We developed them very slowly. We couldn't develop all of the
courses at once. Therefore, we concentrated on some basic courses. In the
development of the program, we also realized that if you want to educate
software engineers, you have to train them according to a coherent philos
ophy. It is, however, very difficult to develop such a coherent philosophy
in software engineering since you don't use the same methods and tools in
all the courses and phases of development. The types of tools or methods
which are used depend on the type of problem you are facing. The value of
a coherent approach to the students is that they will be able to understand
and remember the basic approaches without going back to textbooks all
the time.

Strong emphasis is placed in the training program on exercises, hands
on experiments in the laboratories, and project work. Consequently, this
required the building of very elaborate laboratories for various aspects of
software development for both mini and microcomputers. In each training
program, the students were also assigned at least two projects. The pattern
which we adopted in the development of the embedded systems course, was
later also followed in the development of the CAD-CAM software engineer
ing program which fulfilled similar corporate needs.

536

www.manaraa.com

Currently, we have three basic software engineering retraining programs:
the ADP training program, the embedded computer systems program, and
the CAD-CAM program. The duration of each retraining program is about
1,000 hours.

We recruited the students for the first embedded computer software
engineering retraining course from inside the company. This was not very
successful, because managers did not allow their good subordinates to leave
for seven months. For the following courses, all of the students were re
cruited through ads in the newspapers. For the last course, we again took
some people from inside the company. This worked out very well.

What are the advantages of having an in-house industrial training pro
gram? The programs were developed in order to meet urgent developmental
needs of the company. In those programs, we were able to incorporate the
experience gained on real projects. The programs are very intensive and
concentrated. The program thus solved pressing and immediate needs of
the company. Moreover, whenever we have the need for the training of
people in a new domain we can set up a program in a similar way based on
the experience we accumulated.

Naturally, there are also disadvantages. Training progra.ms within the
company are no substitute for a university education. We don't teach back
ground courses, computer science and other basic engineering courses. Our
students get only their basic retraining in these programs. They should
strive in the future to obtain a Master's degree and augment their training.
We feel that a Master's degree is quite mandatory these days in software
engineering. Many of the jobs we are doing and systems we are develop
ing, are very complex. Therefore, we are not competing in this area with
the universities, but augmenting their education programs whenever it is
necessary.

Currently, larger numbers of software engineers are available, and there
is no immediate need to run additional embedded computer systems soft
ware engineering retraining programs. We feel that, at the moment, it is
more important to upgrade the skills of our working engineers. Therefore,
we decided to set up a series of enhancement courses.

The enhancement program is an embedded computer systems engineer
ing program rather than a pure software engineering program. We feel
that setting up a systems engineering program that teaches all aspects of
computer systems engineering is more important than another software en-

537

www.manaraa.com

gineering program. The reason is that all of our systems are multi-level and
multi-computer systems. Therefore, all the software and systems people
have to be familiar with all aspects: hardware, software, and communica
tions.

The enhancement program we are currently setting up is described in
Table 1. It addresses different classes of populations; embedded computer
systems project managers, embedded computer systems engineers, software
project managers, software engineers, and QA engineers.

I would like to give a brief explanation on the in-house enhancement
program described in Table 1. We are currently teaching a basic require
ments analysis course, which should be taken by the entire population of
systems engineers. We feel that requirements analysis is the most impor
tant course to be taught, since this activity constitutes 20 to 30 percent
of every project. We are also preparing an advanced requirements analysis
course, which is going to be taught to a more limited population. We are
currently preparing an introductory software design course, to be taught
to systems development managers and analysts. The development of this
course is difficult since with managers, we have to discuss software designs,
using drawings and not PDL's. They are not a suitable tool to discuss soft
ware designs with managers. So, we have to learn how to represent software
designs to managers in a way that they can understand and discuss. We are
preparing this course, which should be taught within a few months, even if
we have not yet solved all the problems.

In the enhancement program, we are teaching a course on software de
sign with Ada, which deals with sequential programs. The problem is that
it is too long; it lasts 15 days. We are preparing a second software design
course dealing with parallel programs. We teach a real-time operating sys
tems course, which lasts five days. As can be seen, we already have an entire
set of basic courses, in the enhancement program and we are developing
additional courses now.

One course which was requested was a course on embedded computer
system integration. We don't know yet how to teach it. As a first step, we
had some discussion on how to approach system integration problems with
experienced project engineers. Based on that, we will develop the course. It
is a very difficult course to develop, since there are no available textbooks.

Additional retraining demands have come up recently and this time in
the AI area. Therefore, we set up an AI training program. We decided

538

www.manaraa.com

Population Days

Subject

Basic
Requirements 5
Analysis
Advanced
Requirements 5
Analysis
Introduction
to Software 5
Design
Software
Design with 15
ADA part 1
Software
Design with 8
ADA part 2
Introduction
to Real Time 1
O/S
R/T O/S
Workshop 5
ECS Project
Management 5
Multi
Computer 5
System
Design
Introduction
to AI 5
Introduction
to ECS CM 1
Introduction
to ECS QA 1
QA Workshop 10
System
Development 5
Final Project
Workshop
Software
Development
Final 5
Project
Workshop

TABLE I

Enhancement Courses in Embedded
Computer Systems Engineering

IAI Planned Training Paths

ECS ECS ECS
Project Systems Software

Managers Engineers Project
Managers

• • •

• •

• •

•

•

• •

•

* •

• • •

• • •

• • •

• • •

• •

•

ECS ECS
Software QA

Engineers Engineers

• •

•

• •

• •

•

•

•

• •
•

•

•

www.manaraa.com

TABLE IT

AI Enhancement Courses
New Program - April 1987

Population Managers Systems
Engineers

Subject

Introduction to AI X X
Introduction to AI Languages X
Introduction to Expert Systems X X
Expert System Design X
Introduction to
Computerized Vision X
Planning X
Natural Languages ?
Robotics ? X
All Other Courses

540

AI
Programmers

X
X
X
X

X
X
X
X
X

www.manaraa.com

that we need enhancement courses for many of our engineers in the AI
area. We developed a program described in Table 2. Some of the courses
have already been taught; the introduction to Artificial Intelligence and AI
languages. The course on expert systems is currently being developed.

I would like to summarize some of the lessons we have learned. The
software engineering retraining programs proved to be an excellent solu
tion to some of the corporate personnel needs. Effective training requires
unique programs for people in different application areas such as data pro
cessing, embedded computer systems, and CAD-CAM. There is a need for
specialization in application areas. People in the software business are not
transportable from one application area to another, even in a domain such
as embedded computer software engineering. Each engineer has to special
ize in an application area. Finally, I would like to say that the success of
the retraining programs is due to very thorough preparation and to good
cooperation between the training center staff and all the other departments
in the company.

Ernie Bauder: I noticed the emphasis on retraining, as well as the
conclusion in the lessons learned, regarding the selection of employees. I
wonder how much choice you really have in retraining. people. My expe
rience is that you always get the "dogs" from other disciplines. If they
can't succeed in that other discipline, why should they succeed in software
engineering?

Jonah Lavi: In our first training course, we got people from inside
IAI; we did not get the best because people sent us whoever they could get
rid of. Therefore, we made the decision to hire candidates from the outside,
in the following training courses. With regard to the enhancement courses,
it is no problem to get good people, as long as the courses are no longer
than a week. However, for a retraining program, which lasts half a year, it
is very difficult to get good people from within the company. I believe that
we should get a mix in the future, anyway.

Ernie Bauder: What do you do with the "dogs?"
Jonah Lavi: This is a problem. Even if we take outside people, we

may find out that we've missed, in some cases, in spite of the very strong
screening process we have used. In the last course, we had at least one
student, whom I was teaching, who turned out to be a poor student. I'm
sorry we didn't do more student evaluations in the middle of the course.
He was fired after being with the company for a year and a half.

541

www.manaraa.com

Ernie Bauder: Is failure in your program sufficient grounds for dis
missing a person from your company?

Jonah Lavi: Definitely. If someone who was hired for the retraining
program is not doing well, you can throw him out in the middle of the
course with no problem.

Ernie Bauder: Out on the street or back where he came from?
Jonah Lavi: If he comes from the outside, you have no obligation.

But, if he comes from within the company, he goes back to the department
he came from.

William Lively: The model that we wanted to talk about, relates to
our program and our interface with industry. Our program at Texas A&M
University has 800 undergraduate students, 150 graduate students, and 40
Ph.D. students. There has been a considerable decline in our program, in
terms of undergraduate students. Two years ago, we had 1400. Now we
have 800. Hopefully, we got rid of the high attrition rate, in the elimination
of those students. I suspect that we still graduate the same number of
undergraduate students, but are more efficient in the utilization of out
resources.

Our curriculum is very broad based in software and hardware, with
emphasis on software engineering and AI. It covers standard languages,
architecture systems, and data bases. We teach an undergraduate course
in artificial intelligence, which might make us somewhat unique. There is
an undergraduate course in software engineering. We have specialties in
graphics, vision, and so on.

At the graduate level, we have four areas of concentration and a fairly
flexible, graduate program. Students are only required to take one course
from each of the following areas: theoretical computing, AI and cogni
tive modeling, computer systems and networks, and software systems. Of
course, we have some specialty areas such as vision, graphics, computer
math, and simulation.

Among the software engineering courses available to undergraduates,
there is a senior level course which attempts to cover the basic concepts
associated with the software life cycle. These concepts include techniques
such as requirements analysis, specification design, implementation testing,
and emphasis on user interfaces, because they are becoming much more
important in the software systems that we are building today. We usually
have about 250 students per year, who are involved in our undergraduate

542

www.manaraa.com

Software Engineering course. Basically, it has just been based on princi
ples. The projects course and the undergraduate course really need to be
strengthened by making some necessary changes.

There are three graduate courses, all related to software engineering.
Advanced Software Engineering is a course which assumes that you've had
the undergraduate course as a prerequisite. It covers such topics as software
development environments. We make some attempt to look at methodolo
gies, for evaluation and selection. We talk about topics of rapid prototyping
and reusability. This course is a project based course. Thus, the students
will have the opportunity to apply those principles and techniques that
they have learned concurrently in the graduate course. We teach about
60 students per year, the Advanced Software Engineering course, at the
graduate level.

A second course which has recently been added, is Software Models and
Metrics. Here, we look at life cycle models, complexity models, reliability
models, and cost estimation models. Additionally, we try to see if we can
quantify some aspects of the software development process, which is a very
important area. One of the things that does not occur very rapidly, is the
transfer of technology to industry. The argument has been made that if we
can quantify various techniques and show the productivity associated with
the techniques, we might be able to enhance that transfer.

A new course, which we just taught for the first time last summer, called
AI Applications in Software Engineering, involves topics such as AI devel
opment, automatic programming transformation systems, and knowledge
based assistance. What we are really looking at, in terms of AI Application,
deals with knowledge representation, knowledge acquisition and knowledge
explanation. Can we really do these activities, in relation to the software
development process? We taught this course for the first time last summer.

At the International Conference on Software Engineering, one of the
participants gave a presentation on AI on software engineering and made
the comment that he felt like AI had not really contributed to the field of
software engineering, at this point in time. Hence, we may be in a little
trouble teaching this course.

We want our graduates to have a firm computer science foundation,
obviously good programming skills, analysis skills, design skills, and ap
preciation of the major software development problems, and determining
requirements, which is one of the major problems. We want them to be

543

www.manaraa.com

able to go out and readily assist industry in developing software. From the
reports that we get back on our students, we can conclude that they are
certainly able to do this.

Some very simplistic things, but very consistent with what we want our
students to do, is certainly to be flexible, able to learn, able to solve prob
lems, and able to communicate. Clearly everybody wants their students to
do that.

Communications is a major problem, for which I have no solution. Have
you ever been in an environment where somebody communicated something
to you and you didn't understand it, but you didn't ask them what they
were saying to you? I feel this is the experience in a lot of communication
problems.

Will students always be asking themselves, as they are developing soft
ware, "Where am I going from here? Why am I going there? How am I
going to get there?" We hope that our graduate program would use an
analytical approach to working with software systems.

The economic base for Texas has always been oil, which is sort of catas
trophic for us right now. There is a major emphasis in the state for technol
ogy to be the economic base, and I think that software engineering plays
a major role in that activity. So, part of our impetus, as a land grant
university, is to respond to that.

In terms of program evolution, we started in 1975. We developed our
first graduate course in software engineering, and closely associated with
that, a graduate projects course. It was not until 1983 that we developed
an undergraduate course in software engineering. In 1985, we developed the
models and metrics course, and last summer, we started teaching a course
on AI and software engineering.

I would say that our evolving program has tracked evolving technology.
The development of programming languages has moved to the develop
ment of programming environments, which has moved to the development
of software. Incidentally, I think the software development environments
parallel the Ada efforts, the Stone Man efforts and the Method Man efforts,
including the efforts that DoD has been involved in.

One of our facilities that has been very beneficial to the faculty and
students is our Laboratory for Software Research. Formed in 1983, it pro
vides a focus for research in student development projects, and provides
a structure for the faculty and students to get together. We have regular

544

www.manaraa.com

seminar series, led by different faculty members. There are about seven or
eight faculty members who work within the laboratory. We've been able to
get small grants for students, through the auspices of the laboratory and
some larger grants, for multiple faculty and students.

We have had projects with IBM, Texas Instruments, and Lockheed Mis
sile and Space. In some cases, we have worked for free and in other cases,
they have paid us. These activites have been a special blessing to our
university. We have a very strong alumni from Texas A&M, who have
managed to rise rather high in management. They seem to enjoy coming
back to their Alma Mater and interacting with us, even to the extent of
providing fairly nice research funding.

A particular interaction that was important, was out of a course that
we taught last summer in AI and software engineering. In this particular
course, a number of the Lockheed engineers came and shared with us the
problems associated with the development of the Express System, which is a
very large, sophisticated software development environment. The students
consequently formed a team that worked on a prototype model for this
environment. They also were involved in some literature study. All 15
students had an opportunity to review their projects with the Lockheed
engineers.

One clear benefit is that it has provided funding for some of our students.
The Air Force has provided funding for some of their retired employees, who
have gone back. Thus, we've been very successful in getting funding.

The experience on real, large scale systems has been valuable for our
students. What this involvement does, is allow the students to see where
industry is, what's going on in the industrial environment, and what the
role is that management is playing. We've taught a number of concepts in
our software engineering courses, within a "baptismal environment." That
has no religious connotation. "Baptismal" is a Greek word which simply
means to be totally identified with something. We'd like for our students
to be thoroughly developed in a project.

The one-man project has an autonomy aspect, so the group dynamics do
not appear. But, it allows the students to build confidence. Competition
and cooperation were both a result of the Lockheed contract. They did
compete, to see who could develop systems with a higher quality. But they
also cooperated with one another; there were good group dynamics.

Of course, one of the questions you always ask when you do a project

545

www.manaraa.com

is, "How well do you really adhere to the software engineering techniques
that you previously learned? If you don't adhere to those techniques, see
what happens." The students have the opportunity to view those sorts of
things.

One of those things that came out of this course, is the real need for
something called a life cycle artifact data management system. We re
ally need to capture the corporate history of the development of software
projects, and we pay the price, when we fail to do that.

Express is an evolving system environment. Students get the oppor
tunity to see how the requirements are dynamic, because we don't really
understand the system that we want. They had an opportunity to observe
the failures that occur, due to various constraints, problems, systems, and
people in industry. There is the benefit from one-to-one industry inter
face. Our students work on a one-to-one basis with software engineers, at
Lockheed, in the particular case that I've been talking about.

In summary, the experience that the students have gained has been
very beneficial. The scope of the interaction between the university and
industry should be defined very clearly. If they are going to give us a fairly
sizable sum of money, they tend to dictate the schedules and the activities.
Clearly, you don't want to be involved in developing production systems
for industry. One might think, "Well naturally, that won't happen." But
sometimes, it's surprising how you sort of slip on their critical path. I don't
think that you want to do that, by any means.

Our students have benefited from their involvement with industry. They
get an opportunity to see what industry is like. Industry gets an opportu
nity to see what they're like. For future employment, this is very beneficial.

Dave Haddad: Has there been any research benefit to your faculty
as a result of the cooperation with Lockheed?

William Lively: Yes, I certainly think so, in terms of the AI activities
in software engineering. It certainly hasn't been proven that AI provides
viable answers. Therefore, there's an opportunity to investigate various AI
techniques in software development. I certainly think that that's been the
case for the faculty.

Joel Schnoor: I am concerned about the GE Software Technology
Program. Imagine a manager besieged by a software crisis: "Help! Help!
What am I going to do? I have all this software that has to be created.
All of my existing software needs maintenance and none of it has been

546

www.manaraa.com

developed with software engineering techniques. What am I going to do?"
The manager decides to hire some help: "I think I'll hire some help.

Loraine, can you bring me some resumes of computer science candidates?
Millions of them? Well, how about those with software engineering train
ing? Only two?"

Now, this clearly introduces a problem in software engineering educa
tion. Most computer science graduates have no software engineering train
ing. Any such training that does occur, usually occurs too late in the indi
vidual's curricula, so that a sufficient appreciation of software technology
is not gained.

Another problem arises during the interview: "Well, that's a mighty
fine stack of documentation you have there. What is it? You mean that's a
design document for a bubble sort? Well, in school, did you have any real
life projects? All of your assignments were canned problems? Well, what
are you doing with this project now? You mean you're going to just throw
this all away?"

Because of the brevity of most training programs in academia or indus
try, the amount of documentation produced for a project is disproportionate
to the size of the project. Also, because most projects are canned, they are
just thrown away and therefore, they are not created with maintenance in
mind. They are not maintainable.

So, the manager decides that the individual needs on the job training.
This creates other problems. Introducing the general: "Forget the training!
He's needed on the front lines now!"

Industry often sacrifices the education of the individual, because of real
life schedules and deadlines. Industry often overstresses practicality, tossing
theory to the wind. On the other hand, academia may cover a broad range
of methodologies, but it usually doesn't cover enough, in great detail.

There exists another problem. The manager overhears a presentation
given by one of the software engineers: "This is the worst presentation I've
ever heard! It's terrible! Can't my software engineers do anything but
sit in a corner and code?" Most software engineers are not well versed in
communication skills, interview skills, and leadership skills, and very few
of them have any experience on large scale team projects.

Finally, the last straw: "This is incredible! My software engineers all
have the attitude of hear no evil, speak no evil. They don't communicate
with each other. I'm trying to bring software engineering into an R&D

547

www.manaraa.com

environment and I don't know how to do it. We have all this software we're
creating, we have to ship out to the masses, to the rest of the company. I
don't know what to do. I need help. I have impending deadlines."

Then, one morning, two A.M., while the manager is logged on at home
working, all the problems become crystal clear: "Oh my goodness, the
problems have become crystal clear. There is a positive curriculum. There
is not enough software engineering training at the university level. Most
projects are so small that the documentation is too large, the projects are
thrown away and there is no maintenance done. There is a dichotomy of
institutional objectives. Stress is a practicality. Academia doesn't stress
enough practicality. There is a lack of breadth. My software engineers
aren't getting training in other areas, such as communication. There is a
deficiency of technology transfer. We have to spread software engineering
to the masses. But how am I going to approach these problems?"

Then, the manager has the Epiphany: "Eureka! I've got it! I have
got it! I will create a program which covers a broad range of software
engineering methodology, ~rovides experience in a variety of areas, and
gives the individual a graduate level degree. This program will be a synergy;
a synergy of industrial and academic education. I will call it the Software
Technology Program." With that, the manager rips open his shirt and
becomes Captain Synergy.

Doug Politi: The Software Technology Program is centered at Gen
eral Electric's Corporate and Research and Development Center, in Sch
enectady, New York. It's a three-year locational program with 30 people.
It was designed with the following objectives: to provide high quality soft
ware engineering leaders for our company's components, and to distribute
software engineering within the research center where it is located and
throughout the company.

It begins with an intense eight-week software training course, with the
ory being taught by Roger Pressman and the practicality being understood
by applying this theory to real world projects at the center, with a team
of three other people. At the same time, they are taking effective business
presentation courses and many seminars, explaining the resources and uses
of resources at the center.

The rotational part of the program begins when each year the program
member chooses a new project, from a wide variety of application areas:
artificial intelligence, computer simulation, graphics, real-time control, fac-

548

www.manaraa.com

tory automation and so on. He then tries to integrate that while pursuing
his Master's degree at Rennsalaer Polytechnic Institute, RPI, so that the
two are combined.

When the person graduates from the program, he will take with him the
technology, the tools and the software engineering training he has received
to the company components.

The program provides both deep and broad software engineering train
ing. It does this by teaching multiple methodologies: object oriented design,
data flow design, rapid prototyping, not only in the eight-week course, but
in the year-long projects, as well and the theory being taught at Rennsalaer
Polytechnic Institute.

Because the center is so diverse and there are such a wide veriety of
application areas and because we rotate each year, to a new project, we
get to work in new application areas. Moreover, we get to see how the
software engineering is applied to those different applications. We also try
to integrate RPI course work with work that we are doing at the center.
This is particularily evident with work that we are doing for our thesis. The
Master's requirements indicate that we do a thesis and we try to integrate
it, so that the thesis is being done, in conjunction with one of the year long
projects. A friend of mine took theory that he learned in an expert systems
course at RPI, and applied it to the work he was doing on a project for
designing aircraft engine compressors.

You not only get exposure to the projects you're working on and the
application areas you're working on, but exposure to the projects of the
other 30 STP's and how software engineering was applied successfully and
unsuccessfully to each of those projects.

Because each of the programs is of significant enough size-multiple
year, multiple person projects-you get to see the reality and practicality
of applying software engineering, and not applying software engineering to
those applications. Unlike most software engineering training, where the
role of software developer is stressed, the Software Technology Program
allows the STP to play multiple roles. To "play multiple roles," is a joke.
It wasn't my idea.

When I was an undergraduate, we used to talk about the three G's:
get it going, get it graded, get it gone. Throw your project out when
it's done. Software maintenance is not understood and the importance of
software engineering to maintenance is not understood. That's not true in

549

www.manaraa.com

the program. Even after you leave one of your rotational assignments, you
are held responsible for coming back and helping those projects, if there
are problems.

To understand these next two points, of team leader and review par
ticipant, one must understand how we structured the program itself. We
have tried to take independent but related projects and group them to
gether. For instance, we have an artificial intelligence group, where three
people, working on the projects of causal reasoning, reasoning with un
certainty and diagnostic expert systems. These are different projects, but
they are related. So, we group them together, so they can review each
other's documents, because they are knowledgeable about the related sub
ject area. Each of them get to play the role of review participant, but the
third year STP will get the opportunity to be the team leader and worry
about organizational issues, associated with that team.

Because we each try to better the program and put more into the pro
gram, we can take on as much responsibility as we want. We can teach
courses, teach mini seminars, bring people in for seminars, organize the
summer course, and so on. Thus, we get a wide spectrum of roles we can
play.

Because we are located at the research center, we have an abundant sup
ply of resources. We are also just south of Saratoga Raceway and we have
an abundant supply of race horses. Hence, the richness of the environment
is important to the program.

In terms of hardware, we have around 30 VAX, 1000 PC's, 125 Suns,
Simbolics, and links to Cray computers. Because the center is so diverse,
there's a wide range of software tools that are needed. Because we are on
the leading edge of many of these application areas, the center tends to
be a good site for test releases on new software and liveware, as we saw
before. We not only get to work with the Ph.D. 's at the center, but with
professors at RPI, as well. The important point to notice, however, is that
we are getting the motivation and encouragement to learn the hardware
and software we may not otherwise get, from RPI. They are giving us
assignments and project work in these courses which, in conjunction with
the resources we have at the center, help us to get a better grasp on the
material which is being taught to us. Moreover, we'll be learning new
hardware and software, we might not otherwise have time for.

An important point to consider is that we are not just trying to provide

550

www.manaraa.com

software engineering training, but we are trying to train software engineers.
This can't be done effectively, unless you try to provide communication,
management, and leadership skills. This includes such activities as writ
ing technical papers, attending conferences, delivering presentations, and
learning and practicing leadership skills. When the new program members
enter this program, they take a corporate entry leadership conference. Be
fore they leave, they take a week long project leadership conference. We
take an R&D management course or it is suggested that we take an R &
D management course at RPI. But we get to apply all of this, while we are
doing work at the center.

But teaching software engineering to 30 people each year, or training
software engineering people each year, isn't enough. We have to justify the
expense of this and we have to be able to transfer the technology of the
program, through one of the terms that we call "technology osmosis" to
people other than the 30 people who were involved.

We must justify the expense of the program. Justifying it, by saying we
trained 30 people, isn't enough. We can look at transferring the technol
ogy to both software engineering and the application technology, at three
levels. At the most global level, we say the corporation. How are we going
to transfer the technology to the corporation? Well, each year, the gradu
ates of the program go to different company components. They take with
them, not only the software engineering training that they've had, but the
experience of working with different applications, different hardware, and
software tools.

Now, at a more localized level, at the research center, we have to transfer
information, software engineering, to research types, who tend not to be
overly concerned about software engineering. But at the same time, there's
research being done in software engineering, in certain parts of the center,
and we have to spread that information throughout the center, as well.

At an even more localized area, within the group itself, within the STP
program, Software Technology Program, itself, we have technology osmo
sis, which we consider an informal communication; it's a spreading of the
information about other people's applications, and about course work be
ing done at RPI. You have this informal communication at lunchtime, and
parties and such.

Not only do you have to build this technology transfer structure, you
have to preserve it. You have a lasting infrastructure for technology trans-

551

www.manaraa.com

fer. Consequently, the graduates of the program become what we call
"technological gatekeepers." When they go to the company components,
they then become a gatekeeper, because they've kept ties to us. Thus, the
information taught at the research center goes through them to their com
pany components. It is not only technological information and application
areas being done at the center, but course work being done at RPI, as well.

So, very quickly, Captain Synergy did not save the day totally. There
are some unsolved problems which are specific to the Software Technology
Program, and those more fundamental to software engineers each year. As
we finally ramp them up to be most productive, they graduate and we send
them to the company components. That's good for the components. It's
not necessarily good for the research center.

Because the program is limited in size, it cannot really be considered
a universal solution to software engineering education. We need a tighter
coupling with RPI. We currently have a passive role. We say, "These are
the courses that are being offered there. Good. Take them to best suit
your needs," instead of saying, "These are the courses we want at RPI.
Why don't we sit down and decide what you're going to help teach for our
people?"

At a more global level, we still consider most software engineering occur
ring too late. We want to see it at the undergraduate level. Furthermore,
we have to train upper level management. They still aren't necessarily
aware of the need for software engineering and the effects of not having
software engineering.

The program is both deep and broad; broad in the sense that you learn
multiple methodologies, and deep in the sense that you get to apply these
for an extended period of time. You get to play multiple technical roles:
researcher, software developer, maintainer, review participant, team leader,
etc. You have an abundant supply of resources and the motivation to
learn how to use them. We try to teach well-rounded individuals the skills
involved in communication, technology, management, and leadership. We
have built an infrastructure to transfer this information to the masses.

Dick Fairley: I'm glad to see that the program didn't crush your sense
of humor, as too often occurs in graduate education. What happens when
you leave the nest and go out to the operating divisions of the company?
How are you received in those divisions and how do you feel, being shoved
out of the nest and losing your support systems, in the new environment?

552

www.manaraa.com

Doug Politi: I feel like I'm getting shoved out. It used to be that the
three-year program got extended into at least a four year program, because
they didn't want to leave the research center. It's a nice area, and we are
ready to move onto our next stage, and take on something new.

As far as our reception in the components, one of our problems has been
that General Electric is a very big company, with a lot of components and a
lot of software work going on. But we are used to working on various state
of the art software projects. One of the problems we've had, is identifying
those real, leading edge pockets. However, we are starting to do that now.
I think our reception has been very good.

Gary Ford: You used the word "theory." I had a little problem
when I heard "theory" and "Roger Pressman" in the same sentence. I'm
wondering if you could explain how the word "theory" was used in your
discussion and give us an idea of whether theory is the opposite of practical
or it has some other meaning, with respect to your program.

Doug Politi: I am using the term "theory" to reflect on software
engmeenng.

Priscilla Fowler: Where do these people end up downstream, maybe
not as soon as they get out, but a few years later? What's happening to
them? Do they lose the impetus of their software engineering education?
Do they end up buying into whatever the corporation is doing or do they
manage to actually cause change to take place within the environments
they work?

Jonah Lavi: The students start on various projects. Although we
teach lots of programming, most of the students start with small projects
or requirements analysis, since that's one of the major activities in the
company. The students move on, becoming responsible for projects. They
have been very successful.

Priscilla Fowler: Is that different than the responsibility of other
people within the company, who are doing software projects? Are they
turning out significantly different?

Jonah Lavi: I think that they are better.
Keith Decker: They tend to enter project teams as members of

software project teams, in these very high tech areas of General Electric.
Now, what we've seen happen, is a little hard to say, because our program
is barely five years old, as it is.

Priscilla Fowler: So far, GE sees enough of a pay-off, to keep funding

553

www.manaraa.com

it?
Keith Decker: So far. But it is still very young.
Mark Ardis: I think a lot of our students come in at the point where

they are getting pressed into project leadership roles. When they go out,
they tend to lead projects. I don't know whether they are significantly
better or worse than if they had not come. I'd like to think that they
would be better off if we haven't been around long enough, to know what
happens to these people five years later. But some of them act as change
agents. They feel as if they have a mission. One went to work for an AI
firm. One went to Medical School, and another went on to pursue a Ph.D.
in Computer Science.

William Lively: Most of our students go to places like TI, Lockheed,
General Dynamics, and a few of the oil companies. Most students go into
programmer analyst-type positions. Others become part of a project and
frequently, within five years, move into graduate roles.

Priscilla Fowler: Do you have any feedback from those Texas A&M
alumni or other sources, that would indicate that your graduates are more
desirable than a computer science graduate?

William Lively: At one time we had an Industrial Advisory Com
mittee, which dissolved. However, from seven or eight years ago, that was
the indication that we had.

Priscilla Fowler: They've already addressed the changing demands
for their programs. So, I'd like to ask them now, what would you do
differently, if you had to do it allover again? What do you think that Dave
(Besemer) would do differently?

Keith Decker: First of all, Dave had a difficult time answering this
question. One thing he would have liked or he would like, is to have more
help managing the program. With 30 people, it's getting on the edge of
too much for one person to handle, even with all the help that we provide.

Secondly, early on, there was a decision to teach the eight-week software
engineering course off site; this turned out to be a really bad idea. Hence,
we would stress that the immigration course idea is good, and it should be
held on site, where they will have access to all of the tools and people that
they are going to use throughout their training.

Mark Ardis: Well obviously, we would like a wider base of financial
support. We made a lot of mistakes, but I think we learned from them.
I think we reached a point where we really felt like we were doing all the

554

www.manaraa.com

right things.
William Lively: I guess we'd lobby for the development of the SEI,

a little bit sooner, in terms of benefiting for that. Certainly, I think that
that's going to be important.

After listening to some of the comments on our project. I think we need
to have a stronger project course and sructure it better. There are a lot of
ideas that have come out of this discussion in the last two days.

Jonah Lavi: I don't think that we would have done anything differ
ent. The basic structure of the course is good. Also, the process used in
the development of the course, was the natural way of developing a good
training course. You can't speed things up in this business. Maybe there is
one thing we would have changed; we would have tried to get some teachers
who had more industrial experience. But that is something which you can
not always control. It's not always easy to get experienced teachers. There
is a lot of experience needed by techers in a training program. I think the
IBM experience that we heard about this morning is a different approach
to it. It's very important to get people with lots of experience to train the
people.

Priscilla Fowler: I would just like to underline what Jonah and Al
Pietrasanta have said and that is, to set something like this up, to make
something that's going to last for awhile and produce a quality product,
meaning a good software engineer requires a number of years and a lot of
hard soliciting and fund raising, before you can get executives to buy into
it. They don't pop up overnight. Therefore, I would suggest that you keep
patience in mind.

Jonah Lavi: The problem in the company was not so much to get
the funding for it, but that it takes a good two years to prepare a program
like this. People told me at the time, "Get the program started within a
few months," and I refused. We have followed up on what happened to
the training program at General Dynamics. They set up a program within
five months. They taught ten different courses over half a year, and every
week a different person came into the course, teching only one subject for
a week. The next week, another teacher came to teach. Naturally, the
students never got an integrated approach, from the beginning to the end.
I don't think the course was very successful. Moreover, they lost most of
the people, later on in the program.

Thus, the clue of preparing a training program is to really do it well,

555

www.manaraa.com

like any other software engineering project. You have to really plan it and
do it slowly. There are no miracles in this business.

Priscilla Fowler: Is there a future for this? We are going to contin
ually need sources of software engineering, that are based in industry. Will
the universities ultimately supply enough of these folks, like they do now,
of mechanical engineers and chemical engineers? Do you see a continuing
need? Do the industry people think they are going to continue to have to
do this?

Jonah Lavi: I definitely would prefer not to run that many training
programs in the company, because it is a very expensive proposition. To
run and develop such courses with 25 people costs probably something
like three quarters of a million dollars. It's very expensive. So, I would
prefer to recruit people from the universities. In order to be able to hire
those engineers that we really need now in our company, there must be a
change in the universities. They need to set up a program in computer
systems engineering. I think this type of a program can be set up for
undergraduates, graduates, and Ph.D.'s.

Now, I might go even a step further. The systems we are developing are
so complex, and we need more and more people with a Master's degree or a
Ph.D., to deal with real industrial development problems. A Ph.D. degree
is not a luxury in industrial development today.

Keith Decker: I think that we would still see the need at G E, maybe
not so much any more for software engineering, but to back up a little bit.
It's part of GE's corporate culture, that half of the people that join the
General Electric Company from the undergraduate level enter through a
training program, as opposed to direct hires. It's part of the way that GE
works; they want people to have a chance to tryout different things, to
find out what they want to do, before they start locking themselves into a
position. Even if the people coming out were the most excellent software
engineers in the world, there would still be this very useful purpose for the
program.

William Lively: We produce Ph.D.'s in software engineering, out of
our program and there seems to be a demand for it. I guess the number
that we have produced has not been that high, because we have a broad
curriculum. But we have produced Ph.D.'s that have gone to General
Dynamics and to Sandia.

I certainly think there is a future for software engineering as a field. We

556

www.manaraa.com

are going to keep building very complex systems, which are going to require
this type of activity.

Mark Ardis: Wang Institute was planning a Ph.D. program. We had
two models. One was a traditional Ph.D., similar to a technical Ph.D., to
do research in software engineering. We thought that there was a need for
that. The second model, similar to an advanced practitioner, was an M.D.
degree.

Keith Decker: Speaking from GE's point of view, there is work being
done in software engineering, at the research center, and of course, there
are no such people with these backgrounds. It seems that if they continued
to feel that they should be active in that area, they would like to see people
with that kind of background.

Jonah Lavi: If I could recruit another two Ph.D.'s to my group, I
would recruit them today. But I can't find them. I need them, because
the problems that we are facing are very, very difficult. There are many,
many problems which we are faced with, everyday. We have to apply new
techniques to solve new problems and I think they should be solved by
Ph.D.'s. I prefer Ph.D.'s, because they have the ability to do this job. I
feel there is a tremendous need for them today.

Mark Ardis: Is there a future in software engineering, as a field?
I think software engineering has an identity crises. If you ask two people
for their opinion on what software engineering is, you'll get three or four
answers. Moreover, that's not just faculty that you are asking; that's any
body. So, I think that there is an identity crisis and whether we get beyond
that, is the answer to the question.

If software engineering can somehow coalesce and become an identifiable
field, then I think it has a future. But until that happens, it's undetermined,
in my view.

Jonah Lavi: I would say software engineering has no future, but
computer systems engineering, has a future. You have to train engineers
to do the job, the engineering job, and they have to get the engineering
training. Again, it should be a computer system engineering program, in
which people have to learn, among other things, modeling of physical sys
tems. It's very similar, for example, to control engineering. The first thing
the control engineer learns, is to model physical systems. No attention
has been given to the actual problem of modeling of systems in most com
puter science curricula. However, computer programs are basically control

557

www.manaraa.com

programs of some other things. If you are not able to model the physical
systems, industrial systems, or commercial systems, you won't be able to
engineer the software for it. Therefore, you have to look at that entire field,
as an engineering field and all aspects of it; that is the future.

William Lively: I think there is a future in software engineering, as
soon as we define what it is. Clearly, there are going to be complex software
systems. We are going to need to do some engineering.

Keith Decker: Software engineering education for executives is a
problem. One of the ways we've tried to address it at the center, is by
holding three to five-day seminars, for management, on requirements anal
ysis and software planning, etc. I've heard of other ways to address that
problem. I have a friend who used to be a manager at Xerox and appar
ently, all Xerox management takes a five-day software management course,
even if they don't manage software. I think that that is a great step. But,
it's hard to get an entire company to do something like that.

Jonah Lavi: I think that there is a definite need to give courses in
software engineering to executives. The question is how to build them,
what to show them, and how to demonstrate the problems. One problem
is to present the structure of the software in a way which management can
understand. If we would be able to do that better, we would have an easier
time presenting material to managers. That seems like a very important
area, which could help us explain software problems to managers.

William Lively: I think that there are many companies whose exec
utives are not nearly as enlightened as GE's. I think that knowledge about
new techniques and methodologies and so forth, is really necessary. The
studies on technology transfer indicate that we are really not doing a very
good job in industry, as a whole. So, I think that education is necessary.

Mark Ardis: I guess I'd feel a little pompous, telling an executive
that he really ought to take my course. But we did have some positive
experiences with high level managers participating in our program. Their
experience was that it's important for executives to participate in contin
uing education, all throughout their careers. For software engineering, the
problem is packaging. We don't know how to package the material, to make
it attractive to them. Thus, we have to work on that, if we want them to
take our courses.

558

www.manaraa.com

Questions and Answers on The
Industry / Academia Panel

Priscilla Fowler: We'll take questions from the floor now.
Gail Sailer: This is a little bit of a different thrust. Jonah talked

about the five-year commitment of the students in the program. The RPI
students didn't really address whether there was a commitment back to GE,
and I know that Wang doesn't really encourage interviewing with their stu
dents, as they are going through the program. Is there a commitment back
to the corporation that either sponsors them or GE, and is upper manage
ment afraid of raiding, so that they would not sponsor such a program?

Keith Decker: No, there is no commitment at GE, after three years.
However, I think that there is that fear, but you just try to work with
it-you just have to try to keep on top of it.

Gail Sailer: Do most people go back and stay for awhile?
Keith Decker: We are nine for 12, which isn't bad.
Mark Ardis: At Wang Institute, we do prohibit recruiting of cor

porately sponsored students, so that companies can feel secure that their
employees will be loyal. I don't know what the data is, in terms of how
many of them go back, but we had very positive relations with compa
nies that were sending students every year, on a continuing basis and even
increasing the number.

Ernie Bauder: I have an observation that might be of interest. I just
completed reviewing about 30 applicants from high school for scholarships,
which I also did about five years ago.

Interestingly enough, out of the 30 applicants, all in the top 15 percent
of the class, only one said he was going into computer science. Five years
ago, it was about 50 percent. Almost all of them, with the exception of two
or three, had extensive computer programming courses and other software

www.manaraa.com

engineering-like courses at their high school. All of them looked through
computer science, at some application, like astronomy, biochemistry, or
some other hard science. The computer is a tool that they are using to
look at some other career.

Priscilla Fowler: Would the panel like to comment?
Keith Decker: I don't know whether it matters or not, but when

I started out, I wanted to be an astrophysicist, so I was in the Physics
Department for a year. Sometimes in high school, different things look
more interesting; then, you go to college and get experience with other
things and your views change.

Jonah Lavi: I think one problem is that people learn only program
ming in high schools, and not anything about how to solve problems. Many
of the high school programs are a waste of time because they don't teach
the students how to solve problems. I think the students have the wrong
picture about what's going on.

Steve Wofflnden: Is there a future in software engineering? When
we look at job titles, we see a variety. But until recently, we rarely saw "the
software engineer." Do you see the job of Software Engineer evolving and
becoming a specific sort of job or is it just software engineering, referring
only to principles that allow us to develop good software?

Mark Ardis: In the Boston area, a "software engineer" is a eu
phemism for a well-paid programmer. There has been an inflation of ter
minology, but, to my knowledge, not the corresponding requirement for
upgrading skills.

Jonah Lavi: There is one problem with the so called "software en
gineers." Most of them stay as programmers and they are not getting the
chance to move up to project management. Most system project managers
have come from the hardware side. I think there should be a tremendous
effort being made, to change the image, so that more people, in all man
agement levels, should come from a software engineering background. It is
going to make a big change in the development of projects.

Mark Ardis: I want to disagree with that. Our experience was that
we had a lot of people who were technically very competent, getting pushed
into management, and they didn't like it.

Jonah Lavi: It's a problem that they don't like it, because they don't
appreciate its importance. But there's a tremendous need for it.

Keith Decker: There seems to be a shortage of managers, who have

560

www.manaraa.com

had a software background, versus a hardware background.
Larry Morell: Is there any possibility of getting some of the materials

that the panel members have used, distributed to the Software Engineering
Institute?

Mark Ardis: We would like to get our curriculum at Wang out to
the public and I think some efforts are already underway.

Dick Fairley: We collected a large body of material and archived it
and shipped a copy to SEI. So, all of the course notebooks, for the past
five years, all of the course syllabi, all of our tech reports are somewhere at
SEI.

Charlie Martin: I have a question with reference to the future of
software engineering, because it seems to me that part of the problem is
that software engineering has two futures, and we need to split them. On
one side, there are the techniques of software engineering, which ought to
become part of computer literacy: commenting your code, writing correct
code, and so on. On the other hand, there are real problems in software
engineering: the mathematical properties of large codes, large configuration
management systems, efficiency of algorithms, and so forth.

Does anyone else see it that way, and if so, are we orienting software
engineering teaching the right way?

Mark Ardis: Tony Hoare describes software development as being a
craft these days, as opposed to a science. I think that that's part of what
you were saying. I think there is very much that element in a lot of what
we are teaching.

Charlie Martin: Let me take one more, quick cut. The idea that
I'm trying to stress is that the craft part should eventually become a re
quirement for anybody who uses computers, because people are starting to
write programs themselves: for example, the biomedical people that I deal
with are writing their own programs. Our problem is to teach them to do
it right. But on the other side, somebody has got to build the new tools
and has to do the software engineering of software engineering.

Gary Ford: I want to ask about another kind of industry-academia
interface that may have quite a bit of value. Because the artifacts and the
processes that we study in software engineering, unlike the other sciences or
engineering, are not tangible and small scale, we cannot study them in the
laboratory. Is there a way that you could develop some kind of mechanism
for university faculty to get into industry, for sabbaticals or for summers,

561

www.manaraa.com

to get realistic experience and to conduct experiments? On the other hand,
is there any way for us to get the best people from industry, to come to
universities, on a sabbatical of perhaps a year, and do some teaching and
share their experience with university faculty?

William Lively: We have a very good relationship with industry and
we have talked about Summer Development Programs for faculty, where
they would go and work with industry, to try to interface with them better,
to try and learn more about what they are doing and also to facilitate
technology transfers. So, I think what you're suggesting is certainly viable
and hopefully, in the state of Texas, we have a mechanism where we can
do that.

Mark Ardis: I think one problem with that is the reward structure.
Several of our faculty consult in local industry and thus, keep in touch with
real problems. The problem is, how do you reward people, within a tradi
tional academic environment, for doing something which isn't necessarily
academically respectable?

Keith Decker: We have the same kind of problem, although not
necessarily with software engineering, in the fact that a lot of people at the
Research and Development Center are associate faculty a.t RPI and a lot
of RPI professors consult at the Research Center, although there haven't
been any particular experiments being done with the program yet.

Jonah Lavi: I think that in projects like ours, we should get university
professors to come and consult, and something good will come out of it. It's
a beginning. Many of the people here have not met Professor David Havel,
who has developed the statecharts, together with us, at Israel Aircraft. The
first time I asked him to come to consult, he refused. It took several years,
until I got him on a real project. I think that he finally found out that the
real industrial problems are very meaningful and he got a lot of academic
results from working with industry. So, I think that it is a two- way street,
between academia and industry, and I think that industry should get many
more people from academia, to do work on the real problems.

Priscilla Fowler: It looks like about one third of the audience is from
industry, two-thirds from academia. I would suggest you all take advantage
of the rest of the time at the conference to mingle and compare notes and
think about the answers to some of these questions yourselves.

John Brackett: There was very little discussion, among the other
panelists, on what I regard as the most interesting point of this session,

562

www.manaraa.com

from Jonah Lavi, about the need for computer system engineering, rather
than purely software engineering. Over the last couple of weeks, as part
of preparing a course I'm giving this summer on requirements analysis for
real-time systems, I visited three, large aerospace companies. In all cases,
people who "think they need to know software engineering," are really
doing system engineering, hardware-software trade-offs and understanding
what software and hardware together can do. The point he made, is that
there is not a future for software engineering, but only for computer system
engineering. This seems to have been bypassed by the rest of the panel. I
would just like to see if the rest of the panel would like to come back to
that.

William Lively: Let me just comment that at Texas A&M, we are
currently developing a Computer Engineering Program. We are changing
the name of our Department, to Computer Science and Engineering. So,
we definately see the need for such activities.

Mark Ardis: I guess I agree that there is a future in computer systems
engineering. But I think that the problem is that there are a lot of problems
where the fundamental obstacle seems to be in getting the software to work,
and that is why they tend to view it as a software problem. The software
engineers get asked to do a lot of things that are not traditionally software
engineering tasks. So, that may be the state of the industry or it may just
be the state of our knowledge.

Keith Decker: I'd also agree, that computer systems engineering is
very important. In fact, actually there are two or three paths that people
follow, when they get their Master's at RPI. One is strict computer science
and the other is computer systems engineering. But for different types of
people, depending upon the applications they are interested in, they might
not be interested in a systems engineering approach, although many are.

Priscilla Fowler: I would like to say "thank you" to all my panelists
and especially to the guys from GE, who enlivened the late afternoon's
sluggishness. Thank you all very much.

563

www.manaraa.com

SECTION III

PART 2

ADA IN SOFTWARE ENGINEERING EDUCATION

Part 2 of Section III contains the edited transcript of a panel session
and the associated question/answer session on the role of Ada in software
engineering education. The panelists were Ben Brosgol of Alsys, Larry
Druffel of SEI, Robert Firth of SEI, Nico Habermann of Carnegie-Mellon
University, and David Lamb of Queens University. Norm Gibbs of SEI was
chair of the panel. Nico Habermann was interviewed by Jim Tomayko of
Wichita State University. The interview was videotaped and presented to
the conference attendees.

www.manaraa.com

Panel Session on Ada in Education

Norm Gibbs: The first question I would like to ask refers to the
goals of computer science education and software engineering education.
Because these goals differ, what is the proper role of Ada in each?

Larry Druffel: I think that there's an implied question in the selection
of a language for either computer science or software engineering in an
educational institution. I think it's reflective of the tension that exists
between the need to educate and the need to prepare students for the real
world. Every engineering school I've ever been associated with has grappled
with the issue of preparing people to get a job or preparing people to think.
The first responsibility is to prepare by providing the basic education. The
educator has a customer - his student. That student has to make it in his
other market, the job market.

Now, I'll by analogy say that when I studied at the University of Illinois,
about the time that the transistor was designed and developed, we learned
about transistors. It didn't fundamentally change the concept that we had
to learn. We still learned about things like amplifiers, oscillators and that
sort of thing. But the way that we designed them changed considerably
because we were designing with transistors, instead of with tubes. Today,
of course, nobody in his right mind would teach students to design with
tubes.

But back in that day, that wasn't so clear. University of Illinois was
a little bit ahead of some of the other schools. The point is, we actually
had to learn some different physics. We had to be a little bit more aware
of the duality theories. But the fundamental concepts were the same. The
engineering department chose to teach us about transistors, so that we
could be more effective in the job market.

Fundamentally, I believe that you first have to make the decision in
favor of being able to support the educational activities. But you can't

www.manaraa.com

do that, being blind to your students' marketability. So, I just wanted
to present the question that was implied and perhaps get some comments
before I finish answering the question that was answered.

Ben Brosgol: It's always useful to start by defining one's terms. At
the risk of oversimplifying, I will claim that software engineering focuses
on the process of software development rather than on the end result of
that process, while computer science deals more broadly with the issues
surrounding the behavior of that end product.

In a computer science curriculum, it would be a mistake to use one,
single language. Anyone majoring in computer science must have an un
derstanding of several languages-I would hope at least Pascal, Ada, Algol
60, Lisp, Snobol, Cobol, and some assembly language-with the mastery
of at least two or three. Even people who are not computer science con
centrators, who just want to learn something about programming, should
still have exposure to more than one.

For training in software engineering, on the other hand, I do not see a
compelling reason to use any language other than Ada. There are several
reasons for my stating this. First, Ada was designed as a real language,
not a research language, with software engineering principles built in from
the start. It therefore has the necessary functionality, or, in some cases,
lacks features that interfere with good programming practice. Second, Ada
has received more attention than any other language in the area of design
methods, a subject that belongs in any software engineering curriculum.
Object-Oriented Design, a fairly popular technique, works with Ada. So do
some other methods based on graphical representations of the design, such
as the one that Ray Buhr talked about earlier, or the PAMELA method
devised by George Cherry. Producing a design that maps well to the key
features of the implementation language is a fundamental issue in software
engineering, and Ada with its packages, generics, and tasks, provides the
best example of a target language that can exploit good design techniques.

Since Ada has sometimes been overly "hyped," we should keep in mind
that there are areas of computer science in which it is not appropriate. For
example, it's not the best language for describing harware register transfers;
nor would I want to have Ada as the sample language for which students
must produce a compiler in a one-semester course in compiler construction.

On the other hand, a very interesting course in computer science would
be a study of the rationale of the design of Ada. When you look back on

568

www.manaraa.com

the language's history, the design process was fascinating. Decisions were
faced, and trade-offs were made; it was the most ambitious attempt ever
made at truly engineering a language. I believe that the actual Ada design
rationale document, written by Jean Ichbiah, will be available soon. This
should be a good basis for a one-semester course.

David Lamb: I want to talk about training versus education. There's
a perception that engineering programs have more of a training component
to them than computer science programs. I don't think that's true. I've
been involved in writing a software engineering textbook and I've spoken
with several engineers about what's involved in engineering. They typically
say that engineering really means applying principles to solve problems and
expecting the technology to change every five years-you learn this year's
technology in order to have something to work with. However, one needs
to concentrate on the fundamental principles and know how to use those
principles in order to solve problems. Don't get bound to any particular
technology. Engineering programs concentrate on teaching people to think
as much as computer science programs do. It's just that the kind of think
ing is slightly different. Engineers solve problems. Computer scientists are
in a funny position. People haven't yet developed the perception of the
proper role. Many people who go through undergraduate computer science
programs really ought to be going through undergraduate computer soft
ware engineering programs, except there are not very many. I think that
many computer engineering programs are more heavily hardware oriented
than what should be involved with software engineering.

In both programs the role of Ada in education is like the role of any
other piece of technology. It's like the role of the vacuum tubes or the
transistors in electrical engineering 30 years ago. It's a particular piece of
technology that you'll use. What you really care about is the principles that
underly the technology. The language has some particular embodiment of
those principles. But really, the principles are what matter.

I disagree with Larry about how imponant Ada is in getting people and
interviewers excited about the job market. The interviewers get excited
about seeing a senior level project course, because they care about people
having worked, as well as students having worked with other students. Most
interviewers want to know, "Did the students learn things that will help
them, that will make them flexible enough to adapt to my company? Did
they learn how to work with other people? Did they learn some of the

569

www.manaraa.com

principles that we use?" I don't think that many interviewers are all that
excited about any particular language.

Robert Firth: I have spent ten years teaching various things about
computers. During that time, I had the good fortune to participate in devel
oping three new courses, varying in length from simple six-week courses to
a fifteen-month Master's course. My colleagues and I worried about what
we were trying to teach and how we were trying to teach it. In courses
where we were consciously teaching software engineering, I think there was
no such thing as individuals writing programs. There were projects that
had to be written by teams of three to eight people. I think this is one of the
key points - software engineering is building artifacts. It is building things
of significant size and for some external purpose. It's not just proving that
you know how to code a bubble sort in Pascal. It is demonstrating that
you understand how five people can build a message switching system in a
week.

The original purpose of programming languages was for software engi
neering. It was for building artifacts that served some realistic purpose.
The programming languages used in the real world (Fortran, Cobol, and
now Ada) were designed with that intention. They were designed to be
vehicles for software engineers to communicate with each other and with
the computing engine. Therefore, if I were teaching a software engineering
course, I would use Ada as the vehicle because it is the most modern tech
nology we have, for all its faults and virtues. When teaching engineers, you
need to teach them with state of the art tools because when they graduate,
they will be solving state of the art problems. Therefore, the role of Ada
is to be the vehicle that engineers use to learn principles, to practice their
skills, and above all, to get experience in the creation of realistic programs
and systems.

What we were trying to teach in computer science, however, were con
cepts, such as Ada types, addresses, control flow, the difference between
random access memory and random access backing store, communications
protocols, and finite state machines. Things like the Von Neumann memory
is a very helpful concept that you have to get across to your students.

There are some languages that are good at this and some that are not.
In the past couple of weeks I have followed a fascinating discussion (on the
electronic media) about the meaning of pointers in C. The great majority
of the comments betray a fundamental lack of understanding of the basic

570

www.manaraa.com

concept of what a pointer is and what an address is. I somehow feel that
if I were told to teach people what addresses and pointers are, I wouldn't
do it that way. Indeed, when we did that we used a systems language, not
C. We used assembly code to get the point across. Thus, for computer
science, and for teaching concepts, you need to use languages that expose
those concepts, free from the sort of accretions that all large scale pro
gramming languages require. I would use Ada to teach those concepts that
Ada embodies better than any other language, but not to teach concepts
where I think the structure of Ada disguises the fundamental principles or
has wrapped up the fundamental principles in engineering practice (to the
extent that you can no longer isolate them). For instance, I can use Ada to
teach data structures or to teach the principles of modular programming.
I would not use Ada to teach some aspects of systems programming, such
as memory management and device handling. I certainly would not use
Ada to teach numerical programming because it is too far away from the
principles of the target machine.

Therefore, in software engineering the role of the programming language
is as a tool, the single best tool available for training the engineer. In
computer science, a programming language is a pedagogical device. It's a
way of explaining concepts. I think you have to use several because each
language has specific concepts that it illustrates well, and other concepts
that it do~sn't illustrate so well.

Jim Tomayko: The goals of computer science education and of soft
ware engineering education are different. What is the proper role of Ada
in each?

Nico Habermann: I think there are certain things that computer
science and software engineering have in common. In other respects, they
differ. What they have in common is that both make use of data abstrac
tion, modularity, and other concepts, upon which programming is based.
They differ where the computer science community is interested more in
the analysis of languages, analyzing programming concepts, and compar
ing languages. Computer science is interested more in how, for example,
programming concepts are reflected in program languages. For software
engineering, however, the interest is more in how the language allows the
programmer to express the programs that he wants to write.

I think that Ada has a role to play. Ada is conservative by computer
science standards in reflecting the results of the software engineering re-

571

www.manaraa.com

search that went on in the 1970's, but is important in practice, because
it addresses the problems of the software engineer by supporting the pro
gramming concepts directly in a computer language.

Norm Gibbs: The second question considers only the early courses
in an undergraduate computer science program. Many of you are probably
feeling either implicit or explicit pressure to answer the question about the
role of Ada in beginning courses. The next question for the panel has two
parts: In what ways is Ada a better vehicle than Pascal or Modula-2 for
teaching the elementary concepts of programming? Second, Pascal was
designed to be a teaching language; Ada was designed to be a language
for professional software engineers developing large, real-time embedded
systems. Isn't it inappropriate to try to force Ada into a role (as a teaching
language) for which it was not intended?

Ben Brosgol: Let me give a brief comparison of Ada versus Pascal and
point out places where Ada is better for teaching introductory programming
concepts. One example is the way the two languages treat arrays. Arrays
in Ada can be dynamic; in Pascal, the restriction that arrays be static
can make it clumsy to express what would otherwise be a simple program.
In the area of formal parameters, although Pascal has been generalized
to allow one-dimensional unconstrained arrays (using the Ada term), I
was not able to find in the standard an allowance for multi-dimensional
unconstrained array formal parameters. Thus general vector processing in
Pascal is permitted, but apparently not general matrix processing. Both
are equally supported by Ada.

Type equivalence, an important concept for novice programmers to
grasp, is simpler in Ada than in Pascal. In case you thought that Pascal
was easy, let me read a couple of lines from the Pascal language standard
on conformability and conformant types (Section 11.3.4): "An array type
T (with a single index type) is said to be conformable with a conformant
array schema S (with a single index type specification) if all of the following
conditions are true. Let I represent the ordinal type identifier of the index
type specification of S ... " It then goes on with four fairly dense sentences,
as to what that all means.

In Ada, type equivalence is much simpler. Two types are the same if
and only if they have the same name. Thus there are basic parts of the
language, namely what a data type means, where Ada presents significant
simplicity.

572

www.manaraa.com

Pascal has some artificial limitations; for example, functions cannot
return values from structured types. In Ada, there is no such restriction;
the language is at once more powerful and more simple than Pascal.

There are several places in Pascal where the syntax is quite clumsy;
for example, there is a problem with dangling "else" clauses, and the
semicolon-as-separator rule has some subtleties. Ada corrects these prob
lems.

Students learning how to program should, at some point, be introduced
to the issues surrounding concurrency: synchronization, mutual exclusion,
and so on. There is nothing in Pascal in this area; Ada, on the other hand,
contains a tasking facility that serves as a useful vehicle for instruction on
these topics.

The Ada package concept can be taught to new prgrammers as an ef
fective modularization feature. It is absent from Pascal.

Most of the comments that I made concerning Pascal apply also to
Modula 2. Now, Modula 2 does have a kind of tasking facility, but its
model (namely, coroutines) is much more restrictive than what Ada pro
vides. Also, in Modula 2, identifiers are case sensitive: ALPHA, Alpha, and
alpha are all regarded as different. This was not a good language design
decision.

In response to the second part of the question-whether adopting Ada
for teaching is a misuse because of its original intent as a language for real
time systems-it is worth noting that languages are often used in ways far
from their original intent. Pascal is probably a prime example of this. It
was designed solely for educational use, but it is currently being used in
many other kinds of environments. Simula was designed for simulation,
but its class concept-perhaps the first example of data abstraction in a
programming language-gave it broader applicability. Cobol and Fortran
have been used to write compilers.

Ada was indeed designed for real-time applications. However, if you
look back at the requirements, the vast majority are not specific to real
time embedded systems, but are rather for a general-purpose language
embodying sound software engineering principles. I think if you were to
ask the authors of the language requirements documents, they would con
cur that it was in fact their intent that Ada be used not just for real-time
applications, but also for tool development and general-purpose program
ming. So it is not accurate to regard Ada as just a real-time language.

573

www.manaraa.com

I do not think it is a misuse of Ada to put it in a university class
room environment. In sponsoring the design of Ada, the DoD intended
it to be taught and used at universities. Certainly the academic commu
nity has been involved with Ada from the earliest days, in commenting
on the requirements, consulting during the design, and participating in
the language's review. Several faculty members and graduate students at
Carnegie-Mellon were involved in this process. So, Ada is not foreign to
the university environment, and it has the necessary features to make it
effective as a teaching language.

David Lamb: When teaching the introductory programming courses,
we have a lot of trouble simply getting students to understand anything
about how computers work and how to do the very fundamental things in
programming. There's a real need to not confuse the students with things
that are currently beyond them. I'll agree that many of the things being
said are true concerning areas in which Ada is a better language than Pas
cal; some things are simpler in Ada than in Pascal. There are, however,
also a lot of things in Ada that get in the way of trying to teach a beginning
student what's going on. Overloading, for example, is fundamental to Ada
and very useful, but I despair of trying to teach even a. third-year student
about overloading. One doesn't try to teach overloading in an introductory
course. But because it's in the language and in the compilers, students
will trip over it and get confused. The beginning students really need com
pilers with good error recovery, good error messages, and good debugging
facilities because that's where they have trouble. I think a lot of educators
are seriously concerned that, while some things may be better in Ada for
beginnning courses, the things you don't want to have to deal with will get
in the way.

I still think that when you are concentrating on teaching, you want a
language that's designed with introductory beginning students in mind.

Robert Firth: This question deals with introductory programming
and data structures.

When you've got a fresh mind to teach programming to, two things
are essential. First, teach the concepts in a correct and reasonable man
ner - they have to understand the fundamental concepts. Second, avoid
problems whose explanation is beyond the scope of the course. There may
be such problems in the language; such problems exist in all programming
languages. But students should not have to face those problems merely to

574

www.manaraa.com

get simple programs running.
By way of example, I would never use Pascal as a teaching language.

There are two problems. First, it has no facility for separate compila
tion. This is a fundamental mistake because it would be damaging to give
someone, as their first programming language, a language that lacked the
concept of separate compilation. It is misleading them in one of the abso
lutely vital principles of computer programming. The second problem with
Pascal is that it has data structures with no means of leaving them other
than falling through the bottom. This leads to such badly structured code
that, once again, you are fundamentally misleading them in the manner in
which you execute small pieces of algorithms.

Now let's take the other aspect - that they might trip over things.
Look at the abstract data typing facilities of Modula 2 and of Ada. Both of
these languages have very peculiar restrictions as to how you can build "an
opaque type" or a "private type." To explain those restrictions requires a
very deep understanding of how compilers work, how separate compilation
and the linkage of object code works, and how the concepts of dependent
compliations work, which you juust cannot explain to a first year student.
Therefore, whenever they have a problem whose solution seems to imply an
abstract data type, neither Modula 2 nor Ada is a really appropriate vehicle
for teaching this because students have to accept on faith, restrictions that
are completely incomprhensible to them.

I would choose Modula 2, rather than Ada, as a first teching vehicle.
However, I believe that a subset of Ada with some of the problem areas
availed from them, is probably almost as effective as Modula 2 for the first
year. There are one or two areas where you should not trespass. You
know if they open that chapter of the manual, you'll say, "Well, you are
expecting the third year course under Professor Lamb." That's not a very
nice answer to an intelligent and enthusiastic student, who wants to get
ahead, but it's the best you can give them. For that reason, I would pick
Modula 2 rather than Ada. They have less chance of getting into trouble
if they try to venture for themselves, in additional areas of the language.
These are the key points. The main concepts must be there, in a correct
manner, and there must not be unreasonable stumbling blocks in the path
of their first few programming exercises.

A teaching language whose sole purpose is to teach the language, is
useless. The world had no use for such things. The purpose of a teaching

575

www.manaraa.com

language is to teach something else, something to which the language refers.
In a beginning course, that can only be the basic concepts of what programs
are and what they do. For that reason, a software engineering language,
in principle, is better because it addresses the real world directly, provided
the language has been constructed on sound principles. Hence, it's not
inappropriate to use Ada as a teaching language, if you do so with care,
and if you understand both Ada and teaching.

Larry Druffel: First of all, if you just consider the introductory
courses, with some sort of abstract assumption that your students are not
going to do anything else after they take those two courses, it's not at all
clear to me that Ada would be the right strategy. It isn't better, if that's
all you're going to do. I don't know very many such cases where you are
just going to teach that first course and the students aren't going to go on.

I am intrigued with some of the notions that Ray Buhr proposed. In
the early 1970's, we started teaching procedures and funtions earlier, rather
than later in the course. Traditionally, we built our way up in complex
ity, until we finally taught the most difficult concept, which was proce
dures. Consequently, students left the course, usually not understanding
procedures and functions and not getting that fundamental notion. So,
we turned it around and said, "Let's teach that first. Let's give students
building blocks and teach them to use those building blocks." We built
the bodies and the procedure declarations for them and they put those
together. Surprisingly, they learned procedures very well. I think that a
generally understood concept in education, is that what you teach first, gets
reinforced through use and therefore, the most powerful concept ought to
be taught first. If you focus on the structure first, then I really think that
a language like Ada is more powerful than a language like Pascal, because
Ada allows you to teach those structured notions first. For instance, it isn't
even inconceivable to me, that one might teach generics first. It's probably
somewhat of a revolutionary notion, but particularly if the generics are al
ready built and all you have to do is instantiate them. If the generics are
fairly simple, you would teach the structural notions before you started to
teach the detailed algorithmic notions.

Ada and Pascal are somewhat compatible. The fact that Ada was de
signed as a software engineering language does not necessarily make it in
compatible with teaching it in computer science. Moreover, I feel compelled
to take on this notion of subset because it is incomprehensible to me, that

576

www.manaraa.com

the educational community would be somehow constrained from subsetting
the language. From the very beginning, the statements of the DoD were
very clear about subsetting. It was for production purposes. The early
statements actually pointed out, that for educatonal purposes, you must
necessarily subset.

About 15 years ago, we spent a lot of time, for our introductory course at
the Air Force Academy, subsetting Algol-a simple language. We subset ted
all of the superfluous details out, so we could just teach the concepts.
Then we built a little compile and go compiler, so that we could have 1300
students gobbling up a Burroughs 5500 system. You could prevent them
from getting themselves in trouble by having a very simple compiler. Why
can't you do that with Ada? I think it's a misreading of the question of
subsetting. Therefore, I encourage anybody who wants to teach subsetting,
to write a simple compile and go compiler. It's an interesting exercise for
your upper-division compiler course. Make it fast. Don't let them use the
features that will get them in trouble. However, don't subset away the
important features.

Jim Tomayko: The next question is to consider only the early courses
in an undergraduate computer science program: introductory programming
and data structures. In what ways is Ada a better vehicle than Pascal or
Modula 2 for teaching the elementary concepts of programming?

Nico Habermann: I would summarize that in the following way:
Pascal is dated 1970 and Ada is dated 1980. This expresses the main
difference between the two. Pascal is the result of a very early program
language we taught in the 1960's, at a time when we weren't concerned
much yet about building real systems. Therefore, software engineering ideas
are not reflected in Pascal at all, whereas Ada was published in 1980, after
a decade of research in software engineering. One fundamental difference
between the two is modularity and another is the separation of specification,
a concept not inherent in Pascal.

Jim Tomayko: How about Modula 2 then?
Nico Habermann: Well, Modula 2 is fairly close to Ada. I wouldn't

make that strong of a distinction between the two. With respect to Modula
2, you can see the various results of software engineering. These are in the
language directly. Thus, there is a distinction between the two.

Modula 2 has a drawback, compared to Ada, in that you can't grow
with it very much. However, for early courses, there is not much difference.

577

www.manaraa.com

One could use Modula 2 very well for introductory programming courses.
But the thing that I find missing in it,. is that later on in the senior years
when you have to talk about real systems, Modula 2 is insufficient whereas
Ada is a rich language that allows you to talk about systems.

Jim Tomayko: Well, you almost answered this, but I will ask it
again. Pascal was designed to be a teaching language; Ada was designed to
be a language for professional software engineers developing large, real-time
embedded systems. Isn't it inappropriate to try to force Ada into a role (as
a teaching language) for which it was not intended?

Nico Habermann: Absolutely not. Pascal lacks the certain things
that one must teach, right from the beginning. They are the notion of
modularity and the separation of specification and implementation. Neither
of those concepts is in Pascal. Therefore, it is absolutely wrong to start
teaching Pascal, because you teach students the wrong things. There are
certain things in Ada, that I think you ought to practice right from the
beginning. One of these smaller things is the initialization of variables
in the declaration. This is something which supports the idea of inductive
proof of programs. Everybody should be trained to program in that style
where you know you have values which may change when the program
is executed. With Pascal, you can't do that. It is completely arbitrary.
Hence, the programmer has to behave in a very disciplined manner, so as
to make sure that he does the right thing. Pascal simply lacks the support
for the basic concepts that one should teach right from the very beginning.
Therefore, Ada is much better, although it is a language that has a lot of
interactive features. It is absolutely necessary to try to teach Ada similar
to the way in which Physics is taught. You compare the way that Physics
is taught in high school with the way that mathematics is taught (starting
at the bottom and building up all the time). You build up the concepts,
throughout high school and one builds on top of the other. In Physics,
they don't do it that way. Instead, you start out with something that
covers a broad spectrum of society. You talk about the model of molecules
and elementary concepts. You survey the entire field of subsets. But you
don't go into too much detail. In education, don't simply go through a
linear progression of knowledge. Survey the knowledge and then specialize
in various areas. Build it up, in more or less layered structures.

Thus, that's what should be taught in Ada. Start with major concepts
of Ada, but restrict yourself to certain things. Don't start, for example,

578

www.manaraa.com

by talking about the exception handling. Instead, begin with modularity,
show how it is used, show how to build it, and demonstrate how to specify
interfaces of packages, functions, and procedures, etc. Don't start with
very compicated examples and procedures. The concepts, themselves, can
be taught to everybody who is interested in programming. One can pick
out those concepts of Ada that are suitable to a programmer. Build upon
that foundation and then, go on specializing in deeper concepts.

Jim Tomayko: Consider the following proposition: There are at
least four major areas of concern for educators considering using Ada in
undergraduate courses. The first is the complexity of the language and the
interactions of its various features. The second is the quality (including
speed and user interface) and availability of appropriate textbooks using
Ada. The fourth is Ada knowledge and experience of instructors.

Would students recieve a better overall educational background by using
Pascal or Modula 2 in the early courses and then using Ada in advanced
courses, because of the issues on the proposition above?

Nico Habermann: I already expressed a very strong opinion, that
Pascal is actually no longer the right thing. I think it was the right thing
in the 1970's, but it is no longer the right thing in the 1980's.

With respect to Modula versus Ada, I don't have such a strong pref
erence for one or the other. The only thing, is that I think that one can
grow in Ada, whereas you are limited in your growth with Modula 2. I
think that it's actually a matter of how the material is organized. If you
organize the material in the right way, then Ada is as good an introductory
language as Modula 2 is. Therefore, it depends on the application of the
material that we develop. If you do that right, I don't see a need for first
going to Modula 2 and then to Ada. Right now, Modula 2 is not a very
good alternative. I don't object to Modula 2 at all, but if we make sure
that we have the right educational material, Ada is as good as Modula 2,
and you can grow with it.

Now, to be specific, I do believe that there is quite a bit of complexity
in Ada, particularly if you combine certain features. If you mix generics,
exception handling, and tasking in your programs, you get into some very
intricate things. You must organize the material very clearly.

Moreover, I think that you have to teach people certain habits of dis
cipline before they can use these language facilities. Otherwise, users will
get into trouble.

579

www.manaraa.com

Ada compilers are really getting better now. The DEC compiler is really
quite good. I believe it performs well enough, for a class of 40 students to
do a class project, with no problem. From a teaching viewpoint, therefore,
there are Ada compilers around that are good enough, for that purpose.
That is not to say that there are no problems with compilers, but they
have more to do with the really large embedded systems. Development will
still go on for a while and has to go on for a while, but I don't think that
education has to be concerned about that so much.

The quality of the available textbooks using Ada and the knowledge and
experience of the subject are both real problems. What I've seen in general,
is that textbooks have the flavor of redoing Pascal in Ada. I think that
they start out by stating, "This is an assignment statement," and, "This is
a while-statement," and so forth-this is all wrong. Instead, they should
begin with, "This is a package, and this is the way that packages interface,"
and explain the difference between specification and implementation.

Another thing that I think should be done, is that we don't start with
this idea of programming .from scratch. What should be taught, is that
students first see something like a programming system and how it is repre
sented. From the representation, first learn things about how the interfaces
are specified. Then, gradually get into modifying or improving existing
software, so that they get the understanding of structure, concept, interac
tion, interfacing, and so on. Consequently, they can start building on top
of things that are already in existence instead of starting from scratch.

Consider an architect, for example. When an architect builds a house,
he already has a lot of models of how the house should be built, not only
of the process, but also of the object itself, and the relative proportions
and the materials. He knows all these kinds of things, which are helping
him to build the house. He doesn't build it from scratch, but from models
and materials that are in existence. This is something that we ought to
teach to the students, right from the beginning-to program from existing
knowledge and programs. Therefore, Ada is really suitable for doing that.
If we write educational software packages and present those to the students,
as the first thing, I think that we will teach them a completely different
style of programming, which will be a lot more effective.

Availability of textbooks is a serious problem. Moreover, most people
who teach Ada need help teaching programming. Ada can help a lot to turn
that around if we can produce the right educational materials. I am not

580

www.manaraa.com

very concerned about compilers. I think that the problem with compilers
is straightening itself out. I am concerned about the complexity, however.
Thus, the quality of textbooks and the experience of instructors are my two
mam concerns.

Jim Tomayko: Fundamentally, what you are saying is that indepen
dently of Ada, there should be a real change in how we teach programming,
and that Ada is a vehicle by which you can accomplish that change?

Nico Habermann: I think you're right. If you look at the history
of programming theory, in the 1960's, we wrote one-page programs and
were studying programming constructs. In the 1970's, we wrote ten-page
programs that could still be handled by very simple things, such as separate
compilation. Now, we are trying to build embedded systems, which are very
large. Therefore, for a single programmer to sit and take a piece of paper
and a pencil and write a large system, is absolutely out of the question. It's
actually the wrong approach. You should proceed from the beginning, with
the idea of a system. Therefore, you cannot oversee the entire thing, and
you have to think about interfaces and how to use things that are not under
your control. So indeed, you have to investigate the different programming
styles and attitudes toward programming.

Now, Ada, I believe, is the right vehicle to support that. Ada has
support in the language. That is the good thing about it.

Jim Tomayko: Do you think that currently, there are any other
factors that inhibit the use of Ada in education?

Nico Habermann: There is one more and that is the availability of
an environment. If you use a DEC Ada compiler, there are some tools, but
not related to Ada. Therefore, in order to take this approach, one has to
have a rich environment in which there is already a lot of software available.
The first thing is to go back to the architect. The architect has examples
how to do this. He can go to Italy and he can go to New York and look
at the buildings there and study their construction. In our case, however,
we teach our students by giving them a compiler. I think that we should
give them software. That is not in existence currently. Therefore, it is a
huge task, not a simple one. We should produce environments in which
Ada packages are available to the students. These environments are more
in the laboratory style, where students will find the material and things
that are available for modification and building. That's the kind of thing
that is also missing. So, I don't know who's going to do it, but I think that

581

www.manaraa.com

it is actually the role for the SEI, to create such environments.
Jim Tomayko: I was wondering if there are any other ways that the

educational community can address some of these areas of concern, and
overcome some of these problems?

Nico Habermann: It has been done by having people write text
books as well as educational material, organize workshops. Moreover, these
people can write programs for the Ada environment and build up a net
work community, in which people exchange ideas and make the programs
available and so on. This would be the most effective way. I could see the
SEI's role, to coordinate that type of work. I would think that it would
be the educational community that would go in this direction and produce
the necessary educational material, both in software and textbooks.

Jim Tomayko: Do you see any role of the government, aside from
the SEI, of course, like AJPO?

Nico Habermann: I would say a minor role. In each of those cases,
it should be a stimulating role, but not a role of a dictator, not a role of
taking leadership, in the sense of prescribing people what should be used
or how much of it should be used. That would be all wrong. I trust people.
I think that there are a lot of talented people around. I don't think that
it is necessary to tell them what to do, but to more or less make use of
their talents. I still see the role as supporting, and as a catalyst, making it
possible for people to do this. My priority is actually more on the style of
providing funding for people to do this, than anything else. But don't tell
them what to do.

David Lamb: I think there are a couple of issues that weren't on the
list, that may be more important than some of the ones that were. One
of the issues on the list of concerns of educators, was complexity of the
language and interactions of various features. I guess that is a concern.
There's another factor to it, that is not on the list, which nobody can get
around. This factor is that academics are used to an idea of academic
freedom; one is allowed to hold an opinion, regardless of the facts, in some
situations. There are a lot of people who just do not like Ada, have not
studied it much, and are not going to teach it. You are not going to convince
them to teach it. Many people in the academic community treat Ada the
way that they have always treated Cobol: "That is something that the DoD
invented and we don't like it." Usually the business schools teach Cobol
and the computer science departments do not. The same kind of thing may

582

www.manaraa.com

happen with Ada.
Now, I'm being very pejorative about my own discipline. However, to

overcome this kind of prejudice, an individual instructor can teach what
ever he likes in his courses. But to some extent, you've got to follow the
curriculum. There's a whole pattern. You're teaching a course that is a
prerequisite to other courses, so there is a lot of consensus that you need
in order to build a program. If you've got a department, where half of the
people want nothing to do with Ada, and one or two people want to use
it, it's hard for those one or two people to influence the whole department,
let alone an entire faculty. You're not going to change the introductory
programming courses, without getting your entire university to agree with
it, because three quarters of the university requires an introductory pro
gramming course in their programs. Therefore, there's a lot of inertia and
universities are often very conservative. However, if Ada were clearly the
best language to use, you would have a little more ammunition to overcome
the inertia.

I think that there is a problem in education. There is a perception
among educators that simplicity and elegance are important. Very few
computer science educators have had a lot of experience in industry and
almost none of the students have. It's hard to bring in the idea that, "You
have this complex situation that you need to solve." It is difficult to deal
with that, in a university context. It's not even clear that you should deal
with that in a university context.

More importantly, Nico Habermann's tape said that compilers are okay
now. Nico is teaching at a school where the students felt incredibly op
pressed by the amount of work that they had to do. So, I think Nico is
talking about a situation where educators expect to have their students put
up with a lot. There isn't an Ada compiler, to the best of my knowledge,
that is to Ada, what the Waterloo Fortran compiler was to Fortran, 20
years ago. There is not a compiler that is aimed at being very fast, having
very good error recovery, or having very good debugging. Few industrial
compilers are good enough for educational purposes. They may be vali
dated, but they are not very useful. I've heard fairly good things about the
ALSYS compiler. But the PC version requires that you have an expensive
PC and that you purchase an extra board; we cannot do that in a university
environment. I mention PC's because a number of universities are getting
students to buy personal computers. They can run Fortran, Pascal, and

583

www.manaraa.com

Modula on their personal computers. They are going to have to pay a lot of
money to run Ada on those personal computers. Maybe that's a problem
that will be solved in a few years. But it's certainly a real problem now.

Nico talked about building big environments, to help you teach; that's
a big investment. Most universities are very poor and can't afford that
kind of an investment. Even once it is built, it is a big investment, to start
using it, if you aren't absolutely certain that it's going to work out well. At
Carnegie, they have built new environments for introductory programming,
because a few people were convinced that that was the right way to go.
Carnegie is a fairly rich university, so they can afford to do that, whereas
most of us cannot.

Robert Firth: I have a deal of trouble with this question, because
these areas of concern would not necessarily be my areas of concern. The
proposals to remedy them, do not seem to remedy the areas of concern.
The language is complex, but life is tough and why do we pay educators
to develop courses? It's not any more difficult to teach than Cobol. I have
taught Cobol, and I took three months to learn it, before I attempted to
start to teach it.

I think that Larry Druffel was right. You teach a carefully designed
subset of the language and you lead them into the other features, in the
later courses, as those features are needed.

A much harder problem is the quality of Ada compilers. We would
not contemplate using an Ada compiler, until a VAX 780 could support 50
students, all programming at once. There is no way to justify a colossal
investment of hardware to use a fashionable, expensive programming lan
guage, rather than a slightly less fashionable, cheap one. Compilers have a
long way to go, before they reach that point.

Again, one possibility is Larry's suggestion of the university writing its
own, very fast and slick subset compiler. If there is one thing that uni
versities are rich in, it is programming effort. They have these indentured
servants called graduate students, who can do this kind of thing. However,
I would regard that issue as the number one obstacle to starting up an Ada
course, without an extensive amount of preparation of systems software and
extensive purchases of computers. I think it makes Ada courses in many
colleges infeasible. I mean, teaching people to program, where they may
have a 10-minute wait to get a simple program put together, is crazy.

Now, I learned programming when you hung up your paper tape in the

584

www.manaraa.com

evening and you got it back the next morning. But students today are
under a great deal more pressure and they have much tighter deadlines for
their course work than we had. Giving a student a deadline of one week
for a programming exercise, when he is going to spend most of that time
sitting and waiting for the system, is unreasonable. So, I don't know any
other answer to that, other than build your own subset compiler or wait.

I won't talk about the Ada knowledge and experience of instructors.
It's a perennial problem, that people who can do something other than
teach, do so because gee, they like to eat. People who do nothing but
teach, rapidly deteriorate because their experience becomes obsolete, at a
markable rate. I noticed this when I spent more time teaching than what
was appropriate.

On the question of textbooks, I'm astonished at this idea. I think that
the Ada language has more and better textbooks than any other program
ming language. Some of the text books addressing Ada, at all levels of
difficulty are quite superb. They are far better than the textbooks we
could scrounge up if we wanted to teach C or Cobol or even Fortran, as a
first language.

How can we increase the use of Ada in education, assuming that that is
our objective? One way is to get better software, better support software.
But I have no idea how that can be achieved, considering the number of
people screaming for Ada and the small amount of softwarehouse power
providing the answers. Maybe the educational community can address
this concern by jointly funding some Ada development work. An unusual
suggestion, that the education community should cooperate on anything.
But who knows, maybe they will this time.

r think the appropriate role for the DoD and the AJPO, is to do nothing.
There is no way that we will force this to happen. Indeed, it is inappro
priate that we should force it to happen. Ada should be demand driven,
meaning that people should teach Ada, because they feel they are going to
do something valuable, by teaching Ada and not because Ada is mandated
or that you can get government funding, if you teach Ada or some nonsense.

Now, AJPO should continue to participate in discussions, such as this
one, and in moving information around the place and encouraging people
politely, when they can. But I just do not see how funding a DoD stan
dard Ada programming course is going to achieve anything, at all worth
achieving. I guess I'm somewhat of a pessimist with regard to these issues

585

www.manaraa.com

on Ada.. The things that are wrong, I don't see any quick fix for. Time and
effort is probably the major answer.

Larry Druft'el: I agree and disagree with Robert. First, let me
comment that I remember those early days. I remember hanging up paper
tape in the morning, after staying up all night and getting it back the next
night.

I absolutely agree with him, in that I have a strong belief that Ada or
any other technology, ought to win because of its technical merits and only
because of its technical merits. If it doesn't, then it should fail. Therefore,
I question the value of a mandate and I would absolutely fight one that
even tried. David is right. Professors are going to do what they want to
do anyway. I would discourage any such notion, in a university, even where
the administrators of the university would try, if such where the case, to
force a specific language on the department. I think that this is absolutely
the wrong thing to do.

However, I disagree with Robert in that the AJPO should do nothing.
It is the role of the AJPO to encourage the use of the language and more
importantly, to remove hindrances. If there are things that are hindering
its use in the academic world, then the AJPO ought to actively find ways
to remove those hindrances. Here's a good case in point: If, and I believe
that it is true, the education community really needs a first-class, nicely
supported compiler, then the educational community ought not necessar
ily go out and jointly fund it. What if the educational community gets
together and defines its needs and provides the specification, and we chal
lenge industry and DoD to fund it? I think the AJPO ought to facilitate
its use. Then people can make the choice, for the right reasons, because it
is the best technical choice.

Ben Brosgol: The complexity of the language is manageable if you
teach Ada properly. It is important, during instruction, to emphasize not
just what the language is, but also why the features were developed, and
how they are used. Here's an example in the area of tasking. If you try
to learn the semantics of task activation by just looking at the rules, you
will be completely puzzled. Does the activation come just before, or just
after, the begin, and what difference does it make? You have to know
why the rules were formulated in the manner they were, and this requires
looking at the interaction with exception handling. When I have taught
these subjects to students who had some previous exposure to the language,

586

www.manaraa.com

they were pleased and relieved to find that what had previously seemed to
be just ad hoc rules in fact had a perfectly reasonable rationale.

One problem that always comes up in teaching Ada is knowing where
to start. Let's face it, there is inevitably going to be some degree of magic
and mystery. To do input/output, you have to instantiate a generic. You
can hide this for a while from the students through carefully chosen pre
compiled packages, but sooner or later you'll have to confront good old
TEXT -.l0.INTEGEK10 and its friends.

I have taught Ada to Cobol programmers. Well, Cobol doesn't have
generics but it sure has input/output, and I was not sure how well the Ada
approach to I/O would be received with its "roll your own" attitude. I
decided to bite the bullet on this; in the first workshop, students compiled
the well-traveled generic instantiation

with TEXT_IOj
package INT_IO is new TEXT_IO.INTEGER_IO(integer)j

into their libraries. So they experienced separate compilation, packages,
and generic instantiations, even before they saw an if statement! I won't
say that everyone found it intuitively obvious, but it proved to be less of
a problem than I feared. Actually, I think that one of the main difficulties
was the scary sounding words "instantiate" and "generic." By the end of
the third week, when generics were covered in some detail, the students
understood the principles behind the feature and the mechanics of what
was gomg on.

Another way to deal with complexity is through good textbooks, and
there are some excellent ones on the market. I can mention a few; be
assured that these are my own opinions-I'm not getting any rebates from
the authors. In the Ada course for Cobol programmers, I used Robert
Clark's Programming in Ada: a First Course, and also, intended for those
with Pascal experience, John Barnes' Programming in Ada. The students
found both of these to be quite good. Alan Burns' Concurrent Programming
in Ada is a nice exposition of the Ada tasking features. Grady Booch's
Software Components with Ada and Michael Feldman's Data Structures
with Ada are both effective texts. There are of course others, but these
are the ones that I am most familiar with and have no hesitancy about
recommending.

587

www.manaraa.com

Someone asked, I think in jest, whether Ada was too complicated for
computer science faculty to learn. Well, anyone teaching programming
at the college level is able to learn Ada. The issue is one of attitude,
not aptitude. At universities there's quite often a "not invented here"
factor, and a tendency to favor home grown languages, so introducing a
new language meets resistance.

I should make a few remarks about compilers. DEC VAX Ada has
already been mentioned as an excellent vehicle for instruction. The Alsys
Ada compiler on the PC AT has also been highly successful in classroom use.
Availability is not the issue. The problem, as others have observed, is cost.
Alsys Ada, I regret to say, is still a bit more expensive than Turbo Pascal.
Although I don't see any magical solutions here, we can expect the same
phenomenon with Ada compilers as with other software, as competitive
factors and improved technology combine in yielding better products at
lower prices.

What should the DoD do to promote Ada at universities? I'd like to
say, "They should consider the value of having trained Ada programmers in
the marketplace, and have some means to fund universities to accomplish
this goal." However, I would concur that if Ada is to .succeed at universi
ties, then this should come from its technical merit rather than from DoD
funding and pressure.

Dennis Ahern: I've been quite encouraged by the comments about
the possibility of creating a subset of Ada, to be used for educational pur
poses. I think if there were such a thing and it were, in fact standardized, it
would have many benefits. In particular, there could be textbooks written,
that would focus on that subset. If there is going to be an effort to try to
define a subset of Ada that would be useful for educational purposes, what
educational group might do such a thing?

Larry Druffel: Well, I have to disagree with any notion of standard
izing a subset, for two reasons. First, I think that it makes no sense in the
educational environment. By building a subset or compile and go compiler,
you will indeed have a convention that is the set of features you want to
teach, because that is what will be supported by the compiler. But during
the whole exercise of development of the language, we looked at the sub
setting issues and it is extremely difficult to come up with a proper subset
of the language. Secondly, everybody who teaches it will have somewhat
of a different model of what's most important. Moreover, if you try to

588

www.manaraa.com

come up with a standard subset first, you constrain what the educator is
going to teach and the ways in which he can present it. So, while I applaud
the underlying notion behind what you said, I would really disagree with
standardizing of subset, even for educational purposes. That's not to say
that I'm opposed to subsetting for educational purposes.

Raymond Buhr: I am one of the early educational enthusiasts of
Ada. I find myself slightly on the other side of the fence now. I've taught
Ada. I've taught design with Ada. I've been faced with teaching an in
troductory course. I really wanted to use Ada, but I gave up, for a host
of reasons. The universities that I live in, just are not ready to make that
kind of a commitment. As a political expedient, Modula 2 was the only
thing I saw left. I agree that Pascal is now a bad language to teach pro
gramming in, as a first language. I think universities are politically willing
to accept that Modula 2 is a good language, perhaps for teaching intro
ductory programming. Many universities are making that move. There are
good, cheap compilers. I've used the Logitech compiler. It has good error
messages and it has a screen editor. Unlike the Ada for the PC, it doesn't
take over the machine, to become a dedicated Modula 2 machine. You just
load a program in, as part of your existing environment and use all your
familiar editors. As a political expedient, Modula 2 has many advantages.
I would encourage people to think about that.

On the subset side, I disagree with Larry. I think you can define an Ada
subset, as being the equivalent of Modula 2. Although it has some quirks
such as case sensitivity, Modula 2 subset is still a perfectly rational choice.

Keith Pierce: I am interested in the existence of compilers, and I
heard some contradictory answers from the panel. One person said that
compilers exist now, perfectly acceptable for the educational community.
Another panelist said that compilers do not exist, that can compile a short
Ada program in less than 10 minutes and can support 50 students simul
taneously. So, what's the answer?

Ben Brosgol: Well, there are Ada compilers available, that have
compilation speeds of hundreds of lines per minute. For example, the Alsys
compiler on the PC AT runs at about 200 lines per minute. On a 386-
based machine, it is even faster. Obviously, this is a one-person machine.
Although not all universities are scrapping their timeshared mainframes,
microprocessor-based workstations are becoming more prevalent.

Norm Gibbs: I think we are misleading people, if we let them think

589

www.manaraa.com

that they can get into Ada, like they can by buying Turbo Prolog and
putting it on their existing PC, without a lot of additional investment. We
are not down to the Turbo level yet.

Robert Noonan: I have been using Ada since back when it was a
color. At the College of William and Mary, we have been teaching Ada
to upper level undergraduates since 1982. By and large, Ada for us, is a
paper language. We would like to push it more widely into the curriculum.
I think there's support within the faculty to do that. The problem, is that
it is very difficult to do. Yes, we can mount Ada on a work station or
two. Yes, we can get a couple of AT's and put Ada on them. But we
cannot teach 50, 100, 200, 500 undergraduates on two or three AT's. We
are stuck, particularly if we are buying memory boards. The same is true
for Sun work stations or Apollo work stations; it just can't be done. You
are restricted to only teaching Ada in a single section of an upper level
course somewhere.

Robert Firth: One of the last things I was involved with, back in
England in Military college, was selecting a vehicle for teaching Ada to un
dergraduates. Absolutely do not use work stations. Your undergraduates
are compiling programs in a very carefully structured environment. You
have provided them with extra packages; for instance, some input/output
packages, so they don't have to worry about generic instantiation. When
ever you change one of these, you can't give every student his own floppy
and say "Do a global recompilation of library X." They absolutely must
compile on a single shared machine, with a single shared library, that you
set up, as the pedagogical vehicle. Therefore, we picked DEC VAX on VMS.
Whereas we can easily tolerate 50 or 60 people simultaneously compiling
Fortran, we could only tolerate perhaps 7 or 8, at the most, simultane
ously editing and compiling Ada. We need something like a factor of five
improvement in Ada compilers, before we can contemplate major program
ming courses, given the resources available.

Robert Noonan: At least you have the luxury of having a VAX.
We have an IBM main frame and Primes, and there are no Ada compilers
for those machines. So, we are stuck using work stations or convincing the
computer center to junk all the stuff it already has.

John Brackett: I believe our problem is really a general technology
transfer problem. Being the first instructor on campus, to pick up Ada is
not a job that I would want to be involved in. There's a technology transfer

590

www.manaraa.com

kit needed from somewhere. I happen to believe this is one of the places
that the DoD or the SEI has a role.

My belief is, if anyone is ever going to teach Ada in a university, part
of my technology transfer kit has to be an Ada compiler, optimized to an
environment which universities have.

My main point is, when you put all the little factors together, they don't
fit together. A fast compiler has to be part of the transfer kit. Exercises
have to be integrated with the transfer kit. The book has to be integrated
with the transfer kit. Nobody, on most campuses, wants Ada. Therefore,
why should the instructor go through all the grief? I think unless somebody
takes responsibility for what I call system integration of the transfer kit,
not much is going to happen with Ada in universities.

John Brackett: I tend to believe that SEI is the only vehicle that
might have the role to try to specify the transfer kit, with any hope of it
coming about. Without it, I can't think of a good reason, even having been
interested in Ada for a long time, why I would want to go through the grief
of teaching the first Ada programming course on any campus.

Caroline Eastman: It's probably premature at this point to ask if
Ada should be used in the high schools. But I'd like to ask if anyone on the
panel would care to comment on the impact of what is being done now in
the high schools on the issues raised? That is where many people get their
first exposure to computer programming.

David Lamb: I'd like to try and tackle that, as I teach introductory
programming. We have been involved a lot, in the last few years, talking
about what the impact that increased computer programming education in
high school is going to have on our introductory courses. So far, we spend
as much time teaching the people who know nothing, as we do on teaching
people who have had the high school courses, what they learned wrong, by
learning Basic or even learning Pascal, taught by a high school instructor,
who is even less qualified than some of the poorer college instructors. I
don't think that there is anything in introductory computer programming
courses, that couldn't be taught in high school, if you had the better,
simpler language. I don't think Ada is for high schools. But the main
problem with teaching, pushing programming down into the lower levels,
is that there is only so far that you can go, before you start needing some
discrete mathematics.

Ben Brosgol: I think that Logo would be a much better choice than

591

www.manaraa.com

Basic. But Basic generally comes with the machine. People have to pay
for Logo and unfortunately, that results in a lot of people knowing Basic.

Gary Ford: I assume that ALSYS did not set out to write a slow
compiler. They probably have the compiler running as fast as reasonable,
at this stage. If there were financial incentives offered by the DoD or from
some other organization, what would be the feasability of your company
producing a much faster compiler from your existing compiler? Would it
be a whole new effort? Can you do it in six months or a year or would it
take a lot longer? What is the scope of the problem?

Ben Brosgol: It would be a fairly large effort to redesign the compiler
to optimize for compilation speed. Our cuurent design had as its major
goals to generate highly efficient code, to allow the processing of very large
programs-hundreds of thousands of lines of Ada-and to be portable to a
large variety of hosts and targets. The tradeoff was in the area of compiler
size and compilation speed. Reorienting the technology at this point, well,
this would not be easy.

Norm Gibbs: Is your answer that you can't modify the current one,
but you have to start from scratch?

Ben Brosgol: I wouldn't say start from scratch, but it would be a
major effort to redesign it.

David Lamb: As I do some of my research in compiler technology,
I would think that building a series of subsets of Ada is a harder problem
than building the compilers that have been around so far. You've got a
language subset design problem and you've got the problem of designing a
family of related compilers, with different constraints. One way in which
it is easier, is since they are subsets, you don't have to go through the
validation suite. I think that that has been a major problem in getting
usability out of some of the existing compilers.

John Brackett: I think the key point in getting from here to there
involves going back to what we are trying to achieve for educational pur
poses. I suspect that anybody who is going to make compiler changes,
other than to the front end of their compiler for the syntax of the subset
language, is going to start over with totally new code generators. If you
don't go to some innovative approach for picking up library units, directly
into the code, you can never achieve the required speeds.

My main point is that it's 20 to 50 times harder than Watfor to build
a high-speed Ada educational compiler system. No one has thought about

592

www.manaraa.com

building a total Ada compilation system, including library modules and
reusable components that operate at speeds comparable to equivalent sys
tems for other languages in the university "compile and go" environment.

Charles McKay: Having been involved with Ada, and teaching it
for some time, I think that we are failing to pay adequate attention to
the appropriate criteria for judging what should be in a first course. We,
are all too often thinking about what has always been in a first course.
That's in terms of algorithms, data structures, semantics. and syntax that
are normally associated with issues of programming in the small. I'm not
certain that that's what we should be doing. I don't think that we'd be
doing justice to Ada, if we continue that focal point. We need to be thinking
in terms of higher levels of abstraction. We also need to be thinking in
terms of looking at a problem and decomposing it, in some reasonable way,
so that modules and their interfaces are reasonably clear. There is an
interesting availabilty of public domain reusable components in Ada. They
enable us to introduce concepts of programming-in-the-large by focusing
on specifications of reusable modules and their interfaces in the first course.
Programming-in-the-small is facilitated by good examples embedded into
the implementation part of these modules.

When Pascal came along, those of us who had managed to escape Algol,
looked at Pascal in the same context of a one-semester course in which it
became very obvious that you could not do your job and teach syntax. You
had to deal with semantic contructs and user defined data structures. It
was interesting to see that by shifting the emphasis, students still seemed
capable of picking up the syntax issues. Ada came along. It is perhaps
six times as large, and as complex as Pascal. We still try to teach it in a
one-semester course, which is most inappropriate. The issues there really
boil down to looking at fundamental issues of rationale. You can teach:
"What is the problem we are trying to solve? What are the alternatives
that are available to solve the problem?" Then you ha,-e the opportunity
to abstract, at a much higher level and to deal with things that are more
effective in todays systems.

I think it's interesting to note that the students I've had the pleasure
of working with, are perfectly capable of backing up and picking up on the
syntax as well as the semantic constructs.

Stuart Reges: I also work a lot with the Advance Placement Program
in Computer Science. I think I'm probably the chief adyocate of software

593

www.manaraa.com

engineering. I'm also interested in the question about lIrhat high school
teachers should be teaching.

Should someone be trying to teach Ada concepts, if they are forced
to use Pascal? Furthermore, in a data structures kind of course, should
you make opaque implementations a major theme?- Given that you can't
enforce it and Pascal does not enforce the opacity, but student graders can.

Ben Brosgol: Yes.
Robert Firth: Never impose a restriction that the compiler does

not enforce, in a programming course. One of the most infuriating things a
student can come across, is a solution that compiles, executes, gets the right
answer and then gets downgraded, because he hasn't put the comments in
the right margin, for example.

Stuart Reges: Are you saying that we should not be pushing in the
direction of making opaque implementations?

Robert Firth: No. Absolutely not.
Ben Brosgol: I disagree. I think that it is certainly possible and

appropriate to introduce software engineering principles. when teaching
Pascal, even if the principles are not enforced by Pascal. Thus, I would say
yes, do it.

Larry Druft'el: That's what I was going to comment also. It isn't a
question of, "Should I use Ada-like things?" It's a question of, "Should I
teach good software engineering?" The answer is absolutely yes.

David Lamb: We actually teach abstract data types and opaque
types, in the second half course, in the first year. The students absolutely
hate it when you grade them on anything but the fact that the program
works. But we do that anyway. We teach them how to comment and
document. I think that teaching them about language restrictions is pretty
much the same thing. Students will hate it but they will learn it.

Stuart Reges: Do you do that in Pascal?
David Lamb: Yes. We teach our second course in Pascal.
Brad Brown: Giving an industry point of view, Ada is not a real

time embedded system language. It doesn't work well for that. Real
time systems just don't work well with Ada. The government doesn't care.
They go ahead and and impose it to us on contracts anyway. So, we at
Boeing have probably already trained several hundred, maybe even several
thousand people, how to program in Ada. The previous experience was
Jovial. Now, we have Jovial written in Ada. But this doesn't matter. We

594

www.manaraa.com

meet our contract requirements.
I think the real issue that we are dealing with is that whether you

program in Ada or program in Jovial or C, it's not the language-it's how
you do it. There are places where Pascal is going to be better than Ada
and places where C is better than Cobol. Thus, the real issue is software
engineering, not the material we do it with.

595

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

